OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6340–6351

Porous polymer fibers for low-loss Terahertz guiding

Alireza Hassani, Alexandre Dupuis, and Maksim Skorobogatiy  »View Author Affiliations


Optics Express, Vol. 16, Issue 9, pp. 6340-6351 (2008)
http://dx.doi.org/10.1364/OE.16.006340


View Full Text Article

Enhanced HTML    Acrobat PDF (1563 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose two designs of effectively single mode porous polymer fibers for low-loss guiding of terahertz radiation. First, we present a fiber of several wavelengths in diameter containing an array of sub-wavelength holes separated by sub-wavelength material veins. Second, we detail a large diameter hollow core photonic bandgap Bragg fiber made of solid film layers suspended in air by a network of circular bridges. Numerical simulations of radiation, absorption and bending losses are presented; strategies for the experimental realization of both fibers are suggested. Emphasis is put on the optimization of the fiber geometries to increase the fraction of power guided in the air inside of the fiber, thereby alleviating the effects of material absorption and interaction with the environment. Total fiber loss of less than 10 dB/m, bending radii as tight as 3 cm, and fiber bandwidth of ~1 THz is predicted for the porous fibers with sub-wavelength holes. Performance of this fiber type is also compared to that of the equivalent sub-wavelength rod-in-the-air fiber with a conclusion that suggested porous fibers outperform considerably the rod-in-the-air fiber designs. For the porous Bragg fibers total loss of less than 5 dB/m, bending radii as tight as 12 cm, and fiber bandwidth of ~0.1 THz are predicted. Coupling to the surface states of a multilayer reflector facilitated by the material bridges is determined as primary mechanism responsible for the reduction of the bandwidth of a porous Bragg fiber. In all the simulations, polymer fiber material is assumed to be Teflon with bulk absorption loss of 130 dB/m.

© 2008 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(230.1480) Optical devices : Bragg reflectors
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: January 28, 2008
Revised Manuscript: April 8, 2008
Manuscript Accepted: April 10, 2008
Published: April 21, 2008

Citation
Alireza Hassani, Alexandre Dupuis, and Maksim Skorobogatiy, "Porous polymer fibers for low-loss Terahertz guiding," Opt. Express 16, 6340-6351 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6340


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Xu, K. W. Plaxco, and S. J. Allen, "Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy", Protein Sci. 15, 1175-1181 (2006). [CrossRef] [PubMed]
  2. D. J. Cook, B. K. Decker, and M. G. Allen, "Quantitative THz Spectroscopy of Explosive Materials," OSA conf.: Optical Terahertz Science and Technology, PSI-SR-1196 (2005).
  3. C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, "Using Terahertz Pulsed Spectroscopy to Quantify Pharmaceutical Polymorphism and Crystallinity," J. Pharmaceutical Sci. 94, 837-846 (2005). [CrossRef]
  4. M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bttner, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002). [CrossRef]
  5. W. L. Chan, J. Deibel, and D. M. Mittleman, "Imaging with terahertz radiation," Rep. Prog. Phys. 70, 1325-1379 (2007). [CrossRef]
  6. T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, "Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits," Opt. Lett. 28, 2058-2060 (2003). [CrossRef] [PubMed]
  7. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express 11, 2549-2554 (2003). [CrossRef] [PubMed]
  8. T. Lffler, T. Bauer, K. J. Siebert, H. G. Roskos, A. Fitzgerald, and S. Czasch, "Terahertz dark-field imaging of biomedical tissue," Opt. Express 9, 616-621 (2001). [CrossRef]
  9. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000). [CrossRef]
  10. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, "Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation," Opt. Express 12, 5263-5268 (2004). [CrossRef] [PubMed]
  11. C. Themistos, B. M. A. Rahman, M. Rajarajan, K. T. V. Grattan, B. Bowden, and J. A. Harrington, "Characterization of silver/polystyrene (PS)-coated hollow glass waveguides at THz frequency," J. Lightwave Technol. 25, 2456-2462 (2007). [CrossRef]
  12. C. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, "Flexible terahertz fiber optics with low bend-induced losses," J. Opt. Soc. Am. B 24, 1230-1235 (2007). [CrossRef]
  13. K. Wang, and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004). [CrossRef] [PubMed]
  14. Q. Cao, J. Jahns "Azimuthally polarized surface plasmons as effective terahertz waveguides," Opt. Express 13, 511-518 (2005). [CrossRef] [PubMed]
  15. T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, "Ferroelectric PVDF cladding terahertz waveguide," J. Lightwave Technol. 23, 2469-2473 (2005). [CrossRef]
  16. M. Skorobogatiy and A. Dupuis, "Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance," Appl. Phys. Lett. 90, 113514 (2007). [CrossRef]
  17. R.-J. Yu, Y.-Q. Zhang, B. Zhang, C.-R. Wang, and C.-Q. Wu, "New cobweb-structure hollow Bragg optical fibers," Optoelectronics Lett. 3, 10-13 (2007). [CrossRef]
  18. F. Poli, M. Foroni, D. Giovanelli, A. Cucinotta, S. Selleri, J. B. Jensen, J. Laegsgaard, A. Bjarklev, G. Vienne, C. Jakobsen, and J. Broeng, "Silica bridge impact on hollow-core Bragg fiber transmission properties," Proceedings OFC/NFOEC, 1-3 (2007).
  19. H. Park, M. Cho, J. Kim, and H. Han, "Terahertz pulse transmission in plastic photonic crystal fibres," Phys. Med. Biol. 43, 3765-3769 (2002). [CrossRef]
  20. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jap. J. Appl. Phys. 43, 317-319 (2004). [CrossRef]
  21. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987-1989 (2000). [CrossRef]
  22. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 306-308 (2006). [CrossRef]
  23. M. Nagel, A. Marchewka, and H. Kurz, "Low-index discontinuity terahertz waveguides," Opt. Express 14, 9944-9954 (2006). [CrossRef] [PubMed]
  24. A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Porous Terahertz Fibers Containing Multiple Subwavelength Holes," Appl. Phys. Lett 92, 071101 (2008). [CrossRef]
  25. A. W. Snyder and J. D. Love, Optical Waveguide Theory Chapman Hall, New York, (1983).
  26. M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, "Predicting macrobending loss for large-mode area photonic crystal fibers," Opt. Express 12, 1775-1779 (2004). [CrossRef] [PubMed]
  27. N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002). [PubMed]
  28. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weiseberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, "Low-Loss Asymptotically Single-Mode Propagation in Large Core OmniGuide Fibers," Opt. Express 9, 748 (2001). [CrossRef] [PubMed]
  29. M. Skorobogatiy, S. A. Jacobs, S. G. Johnson, and Y. Fink, "Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates," Opt. Express 10, 1227-1243 (2002). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited