OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6361–6367

Creating optical anisotropy of CdSe/ZnS quantum dots by coupling to surface plasmon polariton resonance of a metal grating

H. K. Fu, C.W. Chen, C.H. Wang, T. T. Chen, and Y. F. Chen  »View Author Affiliations

Optics Express, Vol. 16, Issue 9, pp. 6361-6367 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1633 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An efficient method that can be used to control the optical anisotropy of CdSe/ZnS quantum dots by coupling to the surface plasmon polariton resonance of a metal grating has been demonstrated. It is found that the unpolarized emission and Raman scattering signals arising from CdSe/ZnS quantum dots can be manipulated and exhibit a strong anisotropic behavior based upon our strategy. The optical anisotropy is interpreted in terms of the coupling between the directional surface plasmon of metal grating and the emitted light beam of quantum dots. Due to the importance of quantum dots in optoelectronic devices, our new approach should be useful for future application.

© 2008 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(260.3800) Physical optics : Luminescence
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

Original Manuscript: February 7, 2008
Revised Manuscript: March 13, 2008
Manuscript Accepted: March 13, 2008
Published: April 21, 2008

H. K. Fu, C. W. Chen, C. H. Wang, T. T. Chen, and Y. F. Chen, "Creating optical anisotropy of CdSe/ZnS quantum dots by coupling to surface plasmon polariton resonance of a metal grating," Opt. Express 16, 6361-6367 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Wu and P. Yang, "Germanium nanowire growth via Simple Vapor Transport," Chem. Mater. 12, 605-607 (2000). [CrossRef]
  2. A. M. Morales and C. M. Lieber, "A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires," Science 279, 208-211 (1998). [CrossRef] [PubMed]
  3. B. Murray, C. R. Kagan, and M. G. Bawendi, "Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies," Annu. Rev. Mater. Sci. 30, 545-610 (2000). [CrossRef]
  4. K. Manzoor, S. R. Vadera, and N. Kumar, "Multicolor electroluminescent devices using doped ZnS nanocrystals," Appl. Phys. Lett. 84, 284-286 (2004). [CrossRef]
  5. J. T. Andrews and P. Sen, "Steady state optical gain in small semiconductor quantum dots," J. Appl. Phys. 91, 2827-2832 (2002). [CrossRef]
  6. L. V. Asryana, M. Grundmann, N. N. Ledentsov, O. Stier, and D. Bimberg, "Maximum modal gain of a self-assembled InAs/GaAs quantum-dot laser," J. Appl. Phys. 90, 1666-1668 (2001). [CrossRef]
  7. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004). [CrossRef] [PubMed]
  8. M. A. Hines and P. Guyot-Sionnest, "Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals," J. Phys. Chem. 100, 468-471 (1996). [CrossRef]
  9. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997). [CrossRef]
  10. J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, "Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters," Nanotechnology 18, 025403 (2007). [CrossRef]
  11. J. Wang, M. K. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001). [CrossRef] [PubMed]
  12. H. Pettersson, J. Trägardh, A. I. Persson, L. Landin, D. Hessman, and L. Samuelson, "Infrared Photodetectors in Heterostructure Nanowires," Nano Lett. 6, 229-232 (2006). [CrossRef] [PubMed]
  13. Z. Fan, P. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C. Lin, and H. P. Lee, "Photoluminescence and polarized photodetection of single ZnO nanowires," Appl. Phys. Lett. 85, 6128-6130 (2004). [CrossRef]
  14. V. M. Agranovich and D. L. Mills, Surface Polaritons (North-Holland, Amsterdam, 1982).
  15. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000). [CrossRef]
  16. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004). [CrossRef] [PubMed]
  17. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003). [CrossRef] [PubMed]
  18. E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 331, 189-193 (2006). [CrossRef]
  19. A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90, 243110 (2007). [CrossRef]
  20. C.-Y. Chen, C.-T. Cheng, J.-K. Yu, S.-C. Pu, Y.-M. Cheng, and P.-T. Chou, "Spectroscopy and Femtosecond Dynamics of Type-II CdSe/ZnTe Core-Shell Semiconductor Synthesized via the CdO Precursor," J. Phys. Chem. B 108, 10687-10691 (2004). [CrossRef]
  21. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  22. A. Brioude, J. Bellessa, and S. Rabaste,  et al. "Resonant Raman effect enhanced by surface plasmon excitation of CdSe nanocrystals embedded in thin SiO2 films," J. Appl. Phys. 95, 2744-2748 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited