OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6461–6470

Time domain simulation of electromagnetic cloaking structures with TLM method

Cédric Blanchard, Jorge Portí, Bae-Ian Wu, Juan Antonio Morente, Alfonso Salinas, and Jin Au Kong  »View Author Affiliations


Optics Express, Vol. 16, Issue 9, pp. 6461-6470 (2008)
http://dx.doi.org/10.1364/OE.16.006461


View Full Text Article

Enhanced HTML    Acrobat PDF (739 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The increasing interest in invisible cloaks has been prompted in part by the availability of powerful computational resources which permit numerical studies of such a phenomenon. These are usually carried out with commercial software. We report here a full time domain simulation of cloaking structures with the Transmission Line Modeling (TLM) method. We first develop a new condensed TLM node to model metamaterials in two dimensional situations; various results are then presented, with special emphasis on what is not easily achievable using commercial software.

© 2008 Optical Society of America

OCIS Codes
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(160.3918) Materials : Metamaterials
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Metamaterials

History
Original Manuscript: March 13, 2008
Revised Manuscript: April 17, 2008
Manuscript Accepted: April 18, 2008
Published: April 22, 2008

Citation
Cedric Blanchard, Jorge A. Portí, Bae-Ian Wu, Juan A. Morente, Alfonso Salinas, and Jin Au Kong, "Time domain simulation of electromagnetic cloaking structures with TLM method," Opt. Express 16, 6461-6470 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6461


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  2. H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett. 99, 063903 (2007). [CrossRef] [PubMed]
  3. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069-1071 (2007). [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  5. S. A. Cummer, B-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006). [CrossRef]
  6. C. Christopoulos, The Transmission-Line Modeling method, The Institute of Electrical and Electronic Engineers (New York and Oxford University Press, Oxford, 1995). [CrossRef]
  7. C. Blanchard, J. A. Portí, J. A. Morente, A. Salinas, and E. A. Navarro, "Determination of the effective permittivity of dielectric mixtures with the transmission line matrix method," J. Appl. Phys. 102, 064101 (2007). [CrossRef]
  8. J. A. Portí and J. A. Morente, "A three-dimensional symmetrical condensed TLM node for acoustics," J. Sound Vibr. 241, 207-222 (2001). [CrossRef]
  9. P. P. M. So, H. Du, and W. J. R. Hoefer, "Modeling of metamaterials with negative refractive index using 2-D shunt and 3-D SCN TLM networks," IEEE Trans. Microwave Theory Tech. 53, 1496-1505 (2005). [CrossRef]
  10. J. P. Paul, C. Christopoulos, and D. W. P. Thomas, "Generalized material models in TLM-Part 2: Materials with anisotropic properties," IEEE Trans. Antennas Propag. 47, 1535-1542 (1999). [CrossRef]
  11. L. de Menezes and W. J. R. Hoefer, "Modeling of general constitutive relationships using SCN TLM," IEEE Trans. Microwave Theory Tech. 44, 854-861 (1996). [CrossRef]
  12. Y. Huang, Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt. Express 15, 11133 (2007). [CrossRef] [PubMed]
  13. O. Wiener, "Zur theorie der refraktionskonstanten," Berichteüber die Verhandlungen der Königlich-Sächsischen Gesellsschaft der Wissenschaften zu Leipzig, 256-277 (1910).
  14. S. Xi, H. Chen, B-I. Wu, B. Zhang, Y. Luo, J. Huangfu, D. Wang, J. A. Kong, "Effects of different transformations on the performance of a nonideal cylindrical cloak," Submitted to PIERS.
  15. P. B. Johns and R. L. Beurle, "Numerical solution of 2-dimensional scattering problems using a transmission-line matrix," Proc. Inst. Elec. Eng. 118, 1203-1208 (2007). [CrossRef]
  16. P. B. Johns, "A symmetrical condensed node for the TLM method," IEEE Trans. Microwave Theory Tech. 35, 370-377 (1987). [CrossRef]
  17. J. A. Portí, J. A. Morente, A. Salinas, E. A. Navarro, M. Rodríguez-Sola, "A generalized dynamic symmetrical condensed TLM node for the modeling of time-varying electromagnetic media," IEEE Trans. Antennas Propag. 54, 2-11 (2006). [CrossRef]
  18. J. A. Portí, J. A. Morente, A. Salinas, M. Rodríguez-Sola, C. Blanchard, "On the circuit description of TLM nodes," Int. J. Electron. 93, 479-491 (2006). [CrossRef]
  19. J. A. Portí, J. A. Morente, and M. C. Carrión, "Simple derivation of scattering matrix for TLM nodes," Electron. Lett. 34, 1763-1764 (1998). [CrossRef]
  20. R. Luebbers, D. Ryan, and J. Beggs, "A two-dimensional time-domain near-zone to Far-zone transformation," IEEE Trans. Antennas Propag. 40, 848-851 (1992). [CrossRef]
  21. C. Balanis, Advanced Enginnering Electromagnetics, John Wiley & Sons (1989).
  22. B. Zhang, H. Chen, B-I. Wu, Y. Luo, L. Ran, J. A. Kong, "Response of a cylindrical invisibility cloak to electromagnetic waves," Phys. Rev. B 76, 121101 (2007). [CrossRef]
  23. M. Yan, Z. Ruan, and M. Qiu, "Cylindrical invisibility cloak with simplified material parameters is inherently visible," Phys. Rev. Lett. 99, 233901 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited