OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6479–6485

Quantum interferometry using coherent beam stimulated parametric down-conversion

Aziz Kolkiran and G. S. Agarwal  »View Author Affiliations


Optics Express, Vol. 16, Issue 9, pp. 6479-6485 (2008)
http://dx.doi.org/10.1364/OE.16.006479


View Full Text Article

Enhanced HTML    Acrobat PDF (146 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show how stimulated parametric processes can be employed in experiments on beyond the diffraction limit to overcome the problem of low visibility obtained by using spontaneous down conversion operating in the high gain regime. We further show enhancement of the count rate by several orders when stimulated parametric processes are used. Both the two photon counts and the visibility can be controlled by the phase of the stimulating coherent beam.

© 2008 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(350.5730) Other areas of optics : Resolution
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Quantum Optics

History
Original Manuscript: February 7, 2008
Revised Manuscript: April 8, 2008
Manuscript Accepted: April 14, 2008
Published: April 23, 2008

Citation
Aziz Kolkiran and G. S. Agarwal, "Quantum interferometry using coherent beam stimulated parametric down-conversion," Opt. Express 16, 6479-6485 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6479


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, "Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733-2736 (2000). [CrossRef] [PubMed]
  2. K. T. Kapale and J. P. Dowling, "Bootstrapping Approach for Generating Maximally Path-Entangled Photon States," Phys. Rev. Lett. 99, 053602 (2007). [CrossRef] [PubMed]
  3. H. Lee, P. Kok, N. J. Cerf, and J. P. Dowling, "Linear optics and projective measurements alone suffice to create large-photon-number path entanglement," Phys. Rev. A 65, 030101(R) (2002). [CrossRef]
  4. G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, "Comment on "Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit"," Phys. Rev. Lett. 86, 1389-1389 (2001). [CrossRef] [PubMed]
  5. G. S. Agarwal, K. W. Chan, R. W. Boyd, H. Cable, and J. P. Dowling "Quantum states of light produced by a high-gain optical parametric amplifier for use in quantum lithography," J. Opt. Soc. Am. B 24, 270 (2007). [CrossRef]
  6. B. H. Liu, F. W. Sun, Y. X. Gong, Y. F. Huang, G. C. Guo, and Z. Y. Ou, "Four-photon interference with asymmetric beam splitters," Opt. Lett. 32, 1320 (2007). [CrossRef] [PubMed]
  7. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, "Super-resolving phase measurements with a multiphoton entangled state," Nature (London) 429, 161 (2004). [CrossRef] [PubMed]
  8. P. Walther, J. W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, "De Broglie wavelength of a non-local four-photon state," Nature (London) 429, 158-161 (2004). [CrossRef] [PubMed]
  9. T. Nagata, R. Okamoto, J. L. O??Brien, K. Sasaki, and S. Takeuchi, "Beating the Standard Quantum Limit with Four-Entangled Photons," Science 316, 726-729 (2007). [CrossRef] [PubMed]
  10. A. Kolkiran and G. S. Agarwal, "Heisenberg limited Sagnac interferometry," Opt. Express 15, 6798-6808 (2007). [CrossRef] [PubMed]
  11. A. Kolkiran and G. S. Agarwal, "Towards the Heisenberg limit in magnetometry with parametric downconverted photons," Phys. Rev. A 74, 053810 (2006). [CrossRef]
  12. O. Steuernagel, "de Broglie wavelength reduction for multiphoton wave packet," Phys. Rev. A 65, 033820 (2002). [CrossRef]
  13. O. Glöckl, U. L. Andersen, and G. Leuchs, "Quantum interferometry," in Lectures in quantum information (Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, 2006), pp. 575-590.
  14. J. P. Dowling, "Correlated input-port, matter-wave interferometer: Quantum-noise limits to the atom-laser gyroscope," Phys. Rev. A 57, 4736-4746 (1998). [CrossRef]
  15. M. J. Holland and K. Burnett, "Interferometric detection of optical-phase shifts at the heisenberg limit," Phys. Rev. Lett. 71, 1355-1358 (1993). [CrossRef] [PubMed]
  16. Z. Y. Ou, "Fundamental quantum limit in precision phase measurement," Phys. Rev. A 55, 2598-2609 (1997). [CrossRef]
  17. A. Gatti, E. Brambilla, and L. A. Lugiato, "Entangled Imaging and Wave-Particle Duality: From the Microscopic to the Macroscopic Realm," Phys. Rev. Lett. 90, 133603 (2003). [CrossRef] [PubMed]
  18. B. I. Erkmen and J. H. Shapiro, "Ghost Imaging: What is quantum, what is not," http://arxiv.org/abs/quant-ph/0612070.
  19. R. S. Bennink, S. J. Bentley, R.W. Boyd, and J. C. Howell, "Quantum and Classical Coincidence Imaging," Phys. Rev. Lett. 92, 033601 (2004). [CrossRef] [PubMed]
  20. M. D??Angelo, M. V. Chekhova, and Y. Shih, "Two-photon diffraction and quantum lithography," Phys. Rev. Lett. 87, 013602 (2001). [CrossRef] [PubMed]
  21. P. H. Souto Ribeiro and G. A. Barbosa, "Direct and ghost interference in double-slit experiments with coincidence measurements," Phys. Rev. A 54, 3489 (1996). [CrossRef]
  22. F. Sciarrino, C. Vitelli, F. De Martini, R. G. Glasser, H. Cable, and J. P. Dowling, "Experimental sub-Rayleigh resolution by an unseeded high-gain optical parametric amplifier for quantum lithography," Phys. Rev. A 77, 012324 (2008). [CrossRef]
  23. B. Y. Zel??dovich and D. N. Klyshko, "Statistics of field in parametric luminescence," Sov. Phys. JETP Lett. 9, 40-44 (1969).
  24. C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987). [CrossRef] [PubMed]
  25. Y. H. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, "Two-photon interference in a standard Mach-Zehnder interferometer," Phys. Rev. A 49, 4243 (1994). [CrossRef] [PubMed]
  26. Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, "Experiment on nonclassical 4th-order interference," Phys. Rev. A 42, 2957-2965 (1990). [CrossRef] [PubMed]
  27. J. G. Rarity, P. R. Tapster, E. Jakeman, T. Larchuk, R. A. Campos, M. C. Teich, and B. E. A. Saleh, "2-photon interference in a mach-zehnder interferometer," Phys. Rev. Lett. 65, 1348-1351 (1990). [CrossRef] [PubMed]
  28. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New High-Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev. Lett. 75, 4337 (1995). [CrossRef] [PubMed]
  29. P. Kok, H. Lee, and J. P. Dowling, "Creation of large-photon-number path entanglement conditioned on photodetection, " Phys. Rev. A 65, 052104 (2002). [CrossRef]
  30. R. A. Campos, C. C. Gerry, and A. Benmoussa, "Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements," Phys. Rev. A 68, 023810 (2003). [CrossRef]
  31. O. Steuernagel and S. Scheel, "Approaching the Heisenberg limit with two mode squeezed states," J. Opt. B: Quantum Semiclass. Opt. 6, S66-S70 (2004). [CrossRef]
  32. L. Pezzé and A. Smerzi, "Mach-Zehnder Interferometry at the Heisenberg Limit with Coherent and Squeezed-Vacuum Light," Phys. Rev. Lett. 100, 073601 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited