OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6515–6527

Optofluidic integration of a photonic crystal nanolaser

Se-Heon Kim, Jae-Hoon Choi, Seung-Kon Lee, Shin-Hyun Kim, Seung-Man Yang, Yong-Hee Lee, Christian Seassal, Philippe Regrency, and Pierre Viktorovitch  »View Author Affiliations


Optics Express, Vol. 16, Issue 9, pp. 6515-6527 (2008)
http://dx.doi.org/10.1364/OE.16.006515


View Full Text Article

Enhanced HTML    Acrobat PDF (1576 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a new type of photonic crystal nanolaser incorporated into a microfluidic chip, which is fabricated by multilayer soft lithography. Experimentally, room-temperature continuous-wave lasing operation was achieved by integrating a photonic crystal nanocavity with a microfluidic unit, in which the flow medium both enhances the rate of heat removal and modulates the refractive index contrast. Furthermore, using the proposed system, dynamic modulation of the resonance wavelength and far-field radiation pattern can be achieved by introducing a bottom reflector across which various fluids with different refractive indices are forced to flow. In particular, by maintaining a gap between the reflector and the cavity equal to the emission wavelength, highly efficient unidirectional emission can be obtained. The proposed nanolasers are ideal platforms for high-fidelity biological and chemical detection tools in micro-total-analytical or lab-on-a-chip systems.

© 2008 Optical Society of America

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5960) Lasers and laser optics : Semiconductor lasers
(220.4000) Optical design and fabrication : Microstructure fabrication
(140.3945) Lasers and laser optics : Microcavities
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(230.5298) Optical devices : Photonic crystals

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 3, 2008
Revised Manuscript: April 18, 2008
Manuscript Accepted: April 18, 2008
Published: April 23, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Se-Heon Kim, Jae-Hoon Choi, Seung-Kon Lee, Shin-Hyun Kim, Seung-Man Yang, Yong-Hee Lee, Christian Seassal, Philippe Regrency, and Pierre Viktorovitch, "Optofluidic integration of a photonic crystal nanolaser," Opt. Express 16, 6515-6527 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6515


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004). [CrossRef] [PubMed]
  2. J. M. Gérard and B. Gayral, "Toward high-efficiency quantum-dot single-photon sources," Proc. SPIE 5361, 88-95 (2004). [CrossRef]
  3. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  4. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007). [CrossRef] [PubMed]
  5. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002). [PubMed]
  6. J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, and D.-H. Jang, "Roomtemperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2082 (2000). [CrossRef]
  7. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Anal. Chem. 70, 4974-4984 (1998). [CrossRef] [PubMed]
  8. M. Adams, M. Loncar, A. Scherer, and Y. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348-1354 (2005). [CrossRef]
  9. S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006). [CrossRef]
  10. S.-H. Kim, S.-K. Lee, Y.-H. Lee, and S.-M. Yang, "Microfluidic channel with built-in photonic crystal nanolaser," Proc. SPIE 6645, 66451K (2007). [CrossRef]
  11. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006). [CrossRef] [PubMed]
  12. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003). [CrossRef] [PubMed]
  13. M. Lon?ar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 648-650 (2003).
  14. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999). [CrossRef]
  15. O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  16. H.-Y. Ryu, M. Notomi, and Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003). [CrossRef]
  17. H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, Y.-H. Lee, and J.-S. Kim, "Nondegenerate monopole-mode twodimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001). [CrossRef]
  18. C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Inp bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395 (2005). [CrossRef]
  19. B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Surfaceemitting microlaser combining two-dimensional photonic crystal membrane and vertical bragg mirror," Appl. Phys. Lett. 88, 081113 (2006). [CrossRef]
  20. J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco, and C. F. Gmachl, "Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534-535 (2006). [CrossRef]
  21. H.-Y. Ryu, H.-G. Park, and Y.-H. Lee, "Two-dimensional photonic crystal semiconductor lasers: Computational design, fabrication, and characterization," J. Sel. Top. Quantum Electron. 8, 891-908 (2002). [CrossRef]
  22. A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method (Artech House, Norwood, MA, 2000), 2nd ed.
  23. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004). [CrossRef] [PubMed]
  24. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  25. S.-K. Lee, G.-R. Yi, and S.-M. Yang, "High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips," Lab. Chip 6, 1171-1177 (2006). [CrossRef] [PubMed]
  26. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006). [CrossRef] [PubMed]
  27. E. A. Hinds, in Cavity Quantum Electrodynamics, P. R. Berman, ed. (Academic Press, Inc, Orlando, 1994).
  28. M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Toward photonic-crystal metamaterials: Creating magnetic emitters in photonic crystals," Appl. Phys. Lett. 82, 1069-1071 (2003). [CrossRef]
  29. M.-K. Kim, J.-K. Yang, Y.-H. Lee, and I.-K. Hwang, "Influence of etching slope on two-dimensional photonic crystal slab resonators," J. Korean Phys. Soc. 50, 1027-1031 (2007). [CrossRef]
  30. M. Forsberg, D. Pasquariello, M. Camacho, and D. Bergman, "InP and Si metal-oxide semiconductor structures fabricated using oxygen plasma assisted wafer bonding," J. Electron. Mater. 32, 111-116 (2003). [CrossRef]
  31. S.-H. Kim and Y.-H. Lee, "Symmetry relations of two-dimensional photonic crystal cavity modes," IEEE J. Quantum Electron. 39, 1081-1085 (2003). [CrossRef]
  32. K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347-1354 (2003). [CrossRef]
  33. H. Altug, D. Englund, and J. Vu?kovi?, "Ultra-fast photonic crystal nanolasers," Nat. Phys. 2, 484-488 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited