OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6692–6716

CNP optical metamaterials

Joshua A. Gordon and Richard W. Ziolkowski  »View Author Affiliations


Optics Express, Vol. 16, Issue 9, pp. 6692-6716 (2008)
http://dx.doi.org/10.1364/OE.16.006692


View Full Text Article

Enhanced HTML    Acrobat PDF (945 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Simulation results for optical metamaterials (MTMs) derived from active coated nano-particle (CNP) inclusions for operation in the visible range of the spectrum between 400nm and 700nm are presented. Several examples of optical MTMs designed with these inclusions are characterized, including two-dimensional (2D) CNP metafilms; three-dimensional (3D) periodic CNP arrays; and 3D random CNP distributions. The properties of these optical MTMs are explored using effective medium theories that are applicable to these inclusion configurations. The effective permittivities and refractive indexes of these optical MTMs are compared and contrasted to the scattering properties of their active CNP inclusions.

© 2008 Optical Society of America

OCIS Codes
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials

ToC Category:
Metamaterials

History
Original Manuscript: February 26, 2008
Revised Manuscript: April 22, 2008
Manuscript Accepted: April 23, 2008
Published: April 25, 2008

Citation
Joshua A. Gordon and Richard W. Ziolkowski, "CNP optical metamaterials," Opt. Express 16, 6692-6716 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6692


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Engheta and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Microwave Theory Tech. 53, 1535-1556 (2005). [CrossRef]
  2. N. Engheta and R. W. Ziolkowski, eds. Metamaterials: Physics and Engineering Explorations (IEEE Press, Wiley Publishing, 2006).
  3. V. G. Veselago, ??The electrodynamics of substances with simultaneously negative values of ε and μ,?? Sov. Phys. Usp. 10, 509-514 (1968) [in Russian Usp. Fiz. Nauk. 92, 517-526 (1967)].
  4. R. W. Ziolkowski, "Metamaterial-based antennas: Research and developments," IEICE Trans. Electron. E 89-C, 1267-1275 (2006). [CrossRef]
  5. A. Alù and N. Engheta, "Achieving transparency with plasmonic and metamaterials coatings," Phys. Rev. E 72, 016623 (2005). [CrossRef]
  6. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  8. U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  9. G. W. Milton and N.-A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. A 462, 3027-3059 (2006). [CrossRef]
  10. R. D. Averitt, S. L. Westcott, and N. J. Halas, "Linear optical properties of gold nanoshells," J. Opt. Soc. Am. B. 16, 1824-1832 (1999). [CrossRef]
  11. A. Alù and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double negative-positive metamaterials," J. Appl. Phys. 97, 094310 (2005). [CrossRef]
  12. R. W. Ziolkowski and A. Kipple, "Application of double negative metamaterials to increase the power radiated by electrically small antennas," IEEE Trans. Antennas Propag. 51, 2626-2640 (2003) [CrossRef]
  13. A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006). [CrossRef] [PubMed]
  14. V. M. Shalaev and W. Cai, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  15. G. Dolling, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31, 1800-1802 (2006). [CrossRef] [PubMed]
  16. V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photon. 1, 41-48 (2007). [CrossRef]
  17. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-37 (2007). [CrossRef]
  18. J. A. Gordon and R. W. Ziolkowski, "The design and simulated performance of a coated nano-particle laser," Opt. Express 15, 2622-2653 (2007). [CrossRef] [PubMed]
  19. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  20. A. L. Aden and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys. 22, 1242-1246 (1951). [CrossRef]
  21. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995).
  22. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L.C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-Tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006). [CrossRef] [PubMed]
  23. D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop??ev, and V. M. Ustinov, "InGaAs-GaAs quantum-dot lasers," IEEE J. Sel. Top. Quantum Electron. 3, 196-205 (1997). [CrossRef]
  24. E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Trans Antennas Propag. 51, 2641-2651 (2003). [CrossRef]
  25. S. I. Maslovski and S. A. Tretyakov, "Full-wave interaction field in two dimensional arrays of dipole scatterers," Int. J. Electron. Comun., Arch. Elek. ?bertragungstech. (AE?) 53, 135-139 (1999).
  26. C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles," IEEE Trans Antennas Propag. 47, 853-865 (2005).
  27. S. A Tretyakov and A. J. Viitanen, "Plane waves in regular arrays of dipole scatterers and effective-medium modeling," J. Opt. Soc. Am. A 17, 1791-1797 (2000). [CrossRef]
  28. A. Sihvola, Electromagnetic Mixing Formulas and Applications (Institute of Electrical Engineers, London, 1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited