OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6745–6755

Spectrally-bounded continuous-wave supercontinuum generation in a fiber with two zero-dispersion wavelengths

Sonia Martin-Lopez, Laura Abrardi, Pedro Corredera, Miguel Gonzalez-Herraez, and Arnaud Mussot  »View Author Affiliations


Optics Express, Vol. 16, Issue 9, pp. 6745-6755 (2008)
http://dx.doi.org/10.1364/OE.16.006745


View Full Text Article

Enhanced HTML    Acrobat PDF (597 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A common issue in fiber-based supercontinuum (SC) generation under continuous-wave pumping is that the spectral width of the resulting source is related to the input power of the pump laser used. An increase of the input pump power leads to an increase of the spectral width obtained at the fiber output, and therefore, the average power spectral density (APSD) over the SC spectrum does not grow according to the input power. For some applications it would be desired to have a fixed spectral width in the SC and to increase the average PSD proportionally to the input pump power. In this paper we demonstrate experimentally that SC generation under continuous-wave (CW) pumping can be spectrally bounded by using a fiber with two zero-dispersion wavelengths (ZDWs). Beyond a certain pump power, the spectral width of the SC source remains fixed, and the APSD of the SC grows with the pump power. In our experiment we generate a reasonably flat, spectrally-bounded SC spanning from 1550 nm to 1700 nm. The spectral width of the source is shown to be constant between 3 and 6 W of pump power. Over this range, the increase in input power is directly translated in an increase in the output APSD. The experimental results are confirmed by numerical simulations, which also highlight the sensitivity of this configuration to variations in the fiber dispersion curve. We believe that these results open the way for tailoring the spectral width of high-APSD CW SC by adjusting the fiber dispersion.

© 2008 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 7, 2008
Revised Manuscript: April 11, 2008
Manuscript Accepted: April 11, 2008
Published: April 25, 2008

Citation
Sonia Martin-Lopez, Laura Abrardi, Pedro Corredera, Miguel Gonzalez Herraez, and Arnaud Mussot, "Spectrally-bounded continuous-wave supercontinuum generation in a fiber with two zero-dispersion wavelengths," Opt. Express 16, 6745-6755 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6745


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006). [CrossRef]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 27-27 (2000). [CrossRef]
  3. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002), [CrossRef]
  4. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002). [CrossRef]
  5. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471-3480 (2004). [CrossRef] [PubMed]
  6. G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004). [CrossRef] [PubMed]
  7. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000). [CrossRef]
  8. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchiplaser," Opt. Lett. 28, 1820-1822 (2003). [CrossRef] [PubMed]
  9. S. Kobtsev and S. Smirnov, "Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump," Opt. Express 13, 6912-6918 (2005). [CrossRef] [PubMed]
  10. F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005). [CrossRef] [PubMed]
  11. M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006). [CrossRef] [PubMed]
  12. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004). [CrossRef] [PubMed]
  13. A. K. Abeeluck, C. Headley, and C. G. Jørgensen, "High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser," Opt. Lett. 29, 2163-2165 (2004). [CrossRef] [PubMed]
  14. T. Sylvestre, A. Vedadi, H. Maillotte, F. Vanholsbeeck, and S. Coen, "Supercontinuum generation using continuous-wave multiwavelength pumping and dispersion management," Opt. Lett. 31, 2036-2038 (2006). [CrossRef] [PubMed]
  15. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers, " Opt. Lett. 28, 1353-1355 (2003). [CrossRef] [PubMed]
  16. S. Martín-López, M. González-Herráez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernández, J. Solís, P. Corredera, and M. L. Hernanz. "Broadband spectrally flat and high power density light source for fiber sensing purposes," Meas. Sci. Technol. 17,1014-1019 (2006). [CrossRef]
  17. J. C. Travers, R. E. Kennedy, S. V. Popov, J. R. Taylor, H. Sabert, and B. Mangan, "Extended CW supercontinuum generation in a low water-loss holey fiber," Opt. Lett. 30, 1938-1940 (2005) [CrossRef] [PubMed]
  18. A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, "Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths," Opt. Express 15, 11553-11563 (2007). [CrossRef] [PubMed]
  19. B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, "Phase-shift tecnique for the measurement of chromatic dispersion in optical fibers using leds," IEEE J. Quantum Electron. 18, 1509-1515, 1982. [CrossRef]
  20. D. Monzón-Hernández, A. N. Starodumov, Y. O. Barmenkov, I. Torres-Gómez, and F. Mendoza-Santoyo, "Continuous-wave measurement of the fiber nonlinear refractive index," Opt. Lett. 23, 1274-1276 (1998). [CrossRef]
  21. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003). [CrossRef] [PubMed]
  22. N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995). [CrossRef] [PubMed]
  23. E. G. Neumann, Single-mode fibers: fundamentals (Springer-Verlag, 1988).
  24. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Am. B 6, 1159-1166 (1989). [CrossRef]
  25. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, "Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems," J. Lightwave Technol. 21, 61-68 (2003). [CrossRef]
  26. B. Barviau, S. Randoux, and P. Suret, "Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber," Opt. Lett. 31, 1696-1698 (2006). [CrossRef] [PubMed]
  27. M. González-Herráez and L. Thevenaz. "Simultaneous position-resolved measurement of chromatic dispersion and Brillouin shift in single-mode optical fibers," IEEE Photon. Technol. Lett. 161128-1130 (2004). [CrossRef]
  28. P. -L. Hsiung, Y. Chen, T. Ko, J. Fujimoto, C. de Matos, S. Popov, J. Taylor, and V. Gapontsev, "Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source," Opt. Express 12, 5287-5295 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited