OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6756–6767

Influence of atmospheric phase compensation on optical heterodyne power measurements

Aniceto Belmonte  »View Author Affiliations


Optics Express, Vol. 16, Issue 9, pp. 6756-6767 (2008)
http://dx.doi.org/10.1364/OE.16.006756


View Full Text Article

Enhanced HTML    Acrobat PDF (323 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The simulation of beam propagation is used to examine the uncertainty inherent to the process of optical power measurement with a practical heterodyne receiver because of the presence of refractive turbulence. Phase-compensated heterodyne receivers offer the potential for overcoming the limitations imposed by the atmosphere by the partial correction of turbulence-induced wave-front phase aberrations. However, wave-front amplitude fluctuations can limit the compensation process and diminish the achievable heterodyne performance.

© 2008 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3640) Atmospheric and oceanic optics : Lidar
(030.6600) Coherence and statistical optics : Statistical optics
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Atmospheric and oceanic optics

History
Original Manuscript: February 20, 2008
Revised Manuscript: April 11, 2008
Manuscript Accepted: April 23, 2008
Published: April 25, 2008

Citation
Aniceto Belmonte, "Influence of atmospheric phase compensation on optical heterodyne power measurements," Opt. Express 16, 6756-6767 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6756


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. Fried, "Optical heterodyne detection of an atmospherically distorted signal wave front," Proc. IEEE 55, 57-67 (1967). [CrossRef]
  2. J. H. Shapiro, "Imaging and Optical Communication through Atmospheric Turbulence," in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed., (Springer Verlag, Berlin, 1978) pp. 210-220.
  3. H. T. Yura, "Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence," Opt. Acta 26, 627-644 (1979). [CrossRef]
  4. J. Y. Wang and J. K. Markey, "Modal compensation of atmospheric turbulence phase distortion," J. Opt. Soc. Am. 68, 78-87 (1978). [CrossRef]
  5. G. -m. Dai, "Modal compensation of atmospheric turbulence with the use of Zernike polynomials and Karhunen-Loève functions," J. Opt. Soc. Am. A 12, 2182-2193 (1995). [CrossRef]
  6. A. Belmonte and B. J. Rye, "Heterodyne lidar returns in turbulent atmosphere: performance evaluation of simulated systems," Appl. Opt. 39, 2401-2411 (2000). [CrossRef]
  7. A. Belmonte, "Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance," Appl. Opt. 39, 5426-5445 (2000). [CrossRef]
  8. N. Perlot, "Turbulence-induced fading probability in coherent optical communication through the atmosphere," Appl. Opt. 46, 7218-7226 (2007). [CrossRef] [PubMed]
  9. A. W. Jelalian, Laser Radar Systems (Artech House, Boston, 1995).
  10. J. W. Goodman, "Some effects of Target-induced Scintillation on optical radar performance," Proc. IEEE 53, 1688-1700 (1965). [CrossRef]
  11. N. E. Zirkind and J. H. Shapiro, "Adaptive optics for large aperture coherent laser radars," Proc. SPIE 999, paper 13 (1988).
  12. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  13. R. K. Tyson, "Using the deformable mirror as a spatial filter: application to circular beams," Appl. Opt. 21, 787-793 (1982). [CrossRef] [PubMed]
  14. R. J. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-212 (1976). [CrossRef]
  15. D. L. Fried, "Branch point problem in adaptive optics," J. Opt. Soc. Am. A 15, 2759-2768 (1998). [CrossRef]
  16. M. C. Roggemann and A. C. Koivunen, "Branch-point reconstruction in laser beam projection through turbulence with finite-degree-of-freedom phase-only wave-front correction," J. Opt. Soc. Am. A 17, 53-62 (2000). [CrossRef]
  17. G. A. Tyler, "Reconstruction and assessment of the least-squares and slope discrepancy components of the phase," J. Opt. Soc. Am. A 17, 1828-1839 (2000). [CrossRef]
  18. J. Y. Wang, "Phase-compensated optical beam propagation through atmospheric turbulence," Appl. Opt. 17, 2580-2590 (1978). [PubMed]
  19. J. D. Barchers, D. L. Fried, and D. J. Link, "Evaluation of the Performance of Hartmann Sensors in Strong Scintillation," Appl. Opt. 41, 1012-1021 (2002). [CrossRef] [PubMed]
  20. J. D. Barchers, D. L. Fried, and D. J. Link, "Evaluation of the Performance of a Shearing Interferometer in Strong Scintillation in the Absence of Additive Measurement Moise," Appl. Opt. 41, 3674-3684 (2002). [CrossRef] [PubMed]
  21. J. D. Barchers, "Application of the parallel generalized projection algorithm to the control of two finite-resolution deformable mirrors for scintillation compensation," J. Opt. Soc. Am. A 19, 54-63 (2002). [CrossRef]
  22. G. A. Tyler, "Adaptive optics compensation for propagation through deep turbulence: initial investigation of gradient descent tomography," J. Opt. Soc. Am. A 23, 1914-1923 (2006). [CrossRef]
  23. L. C. Andrews, "An analytical model for the refractive-index power spectrum and its application to optical scintillation in the atmosphere," J. Mod. Opt. 39, 1849-1853 (1992). [CrossRef]
  24. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, 2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited