OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 1 — Jan. 5, 2009
  • pp: 104–116

Study on the decay mechanisms of surface plasmon coupling features with a light emitter through time-resolved simulations

Wen-Hung Chuang, Jyh-Yang Wang, C. C. Yang, and Yean-Woei Kiang  »View Author Affiliations

Optics Express, Vol. 17, Issue 1, pp. 104-116 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (597 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transient behaviors of the dipole coupling with surface plasmon (SP) features in an Ag/dielectric-interface grating structure in order to understand the characteristics of those dipole-coupling features are demonstrated. In particular, the major decay mechanisms of those coupling features can be identified. For comparison, the time-resolved behaviors of the resonant surface plasmon polariton (SPP) coupling feature on a flat interface are also illustrated. Among the three major grating-induced SP-dipole coupling features, two of them are identified to be localized surface plasmons (LSPs). The third one is a grating-assisted SPP, which shows two decay components, corresponding to the first stage of SPP in-plane propagation and the second stage of coupling system decay. In all the dipole coupling features, metal dissipation can dominate the energy relaxation process, depending on the assumption of damping factor. All the dissipation rates are proportional to the assumed damping factor in the Drude model of the metal. The dissipation rates of the LSP and resonant SPP features are about the same as the damping rate, implying their local electron oscillation natures. The dissipation rate of the grating-assisted SSP feature is consistent with theoretical calculation. In the LSP features under study, dielectric-side emission is prominent. The coupled energy in the grating-assisted SPP feature can be efficiently stored in the coupling system due to its low emission efficiency and effective energy confinement through grating diffraction.

© 2009 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: October 9, 2008
Revised Manuscript: December 16, 2008
Manuscript Accepted: December 19, 2008
Published: December 23, 2008

Wen-Hung Chuang, Jyh-Yang Wang, C. C. Yang, and Yean-Woei Kiang, "Study on the decay mechanisms of surface plasmon coupling features with a light emitter through time-resolved simulations," Opt. Express 17, 104-116 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. M. Shalaev, R. Botet, J. Mercer, and E. B. Stechel, "Optical properties of self-affine thin films," Phys. Rev. B 54, 8235-8242 (1996). [CrossRef]
  2. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-Enhanced Emission from Single Semiconductor Nanocrystals." Phys. Rev. Lett. 89, 117401 (2002). [CrossRef] [PubMed]
  3. M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, "Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate," Phys. Rev. B 74,184203 (2006). [CrossRef]
  4. Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, "Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites," Nanotechnology 18, 415707 (2007). [CrossRef]
  5. D. M. Yeh, C. F. Huang, and C. C. Yang, "White-light Light-emitting Device Based on Surface Plasmon-enhanced CdSe Nano-crystal Wavelength Conversion on a Blue/green Two-color Light-emitting Diode," Appl. Phys. Lett. 92, 091112 (2008). [CrossRef]
  6. A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tacheuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002). [CrossRef]
  7. Y. Ito, K. Matsuda, and Y. Kanemitsu, "Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces," Phys. Rev. B 75, 033309 (2007). [CrossRef]
  8. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005). [CrossRef]
  9. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004). [CrossRef] [PubMed]
  10. G. Sun, J. B. Khurgin, and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007). [CrossRef]
  11. J. B. Khurgin, G. Sun, and R. A. Soref, "Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit," J. Opt. Soc. Am. B 24, 1968-1980 (2007). [CrossRef]
  12. J. Y. Wang, Y. W. Kiang, and C. C. Yang, "Emission Enhancement Behaviors in the Coupling between Surface Plasmons on a 1-D Metallic Grating and a Light Emitter," Appl. Phys. Lett. 91, 233104 (2007). [CrossRef]
  13. K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, "Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure," Appl. Phys. Lett. 92, 013108 (2008). [CrossRef]
  14. W. H. Chuang, J. Y. Wang, and C. C. Yang, and Y. W. Kiang, "Differentiating the Contributions between Localized Surface Plasmon and Surface Plasmon Polariton on a One-dimensional Metal Grating in Coupling with a Light Emitter," Appl. Phys. Lett. 92, 133115 (2008). [CrossRef]
  15. W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Quantum Efficiency Enhancement of a Light-emitting Diode Based on Surface Plasmon Coupling with a Quantum Well," IEEE Photon. Technol. Lett. 20, 1339-1341 (2008). [CrossRef]
  16. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode," Appl. Phys. Lett. 91, 171103 (2007). [CrossRef]
  17. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Localized surface plasmon-induced emission enhancement of a green light-emitting diode," Nanotechnology 19, 345201 (2008). [CrossRef] [PubMed]
  18. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, "Surface-Plasmon-Enhanced Light-Emitting Diodes," Adv. Mater. 20, 1253-1257 (2008). [CrossRef]
  19. D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003). [CrossRef] [PubMed]
  20. K. Li, X. Li, M. I. Stockman, and D. J. Bergman, "Surface plasmon amplification by stimulated emission in nanolenses," Phys. Rev. B 71, 115409 (2005). [CrossRef]
  21. J. Seidel, S. Grafström, and L. Eng, "Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution," Phys. Rev. Lett. 94, 177401 (2005). [CrossRef] [PubMed]
  22. I. I. Smolyaninov and Y. J. Hung, "Enhanced transmission of light through a gold film due to excitation of standing surface-plasmon Bloch waves," Phys. Rev. B 75, 033411 (2007). [CrossRef]
  23. Y. Gong and J. Vu?kovi?, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113 (2007). [CrossRef]
  24. F. Wooten, Optical Properties of Solids (Academic Press, New York, 1972).
  25. J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Numerical study on surface plasmon polariton behaviors in periodic metal-dielectric structures using a plane-wave-assisted boundary integral-equation method," Opt. Express 15, 9048-9062 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-14-9048 [CrossRef] [PubMed]
  26. K. M. Chen, "A mathematical formulation of the equivalence principle," IEEE Trans. Microwave Theory Tech. 37, 1576-1581 (1989). [CrossRef]
  27. C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley & Sons, New York, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2232 KB)     
» Media 2: MOV (1924 KB)     
» Media 3: MOV (1743 KB)     
» Media 4: MOV (2189 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited