OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 1 — Jan. 5, 2009
  • pp: 150–155

Chip-scale hybrid optical sensing systems using digital signal processing

Sang-Yeon Cho and Deva K. Borah  »View Author Affiliations


Optics Express, Vol. 17, Issue 1, pp. 150-155 (2009)
http://dx.doi.org/10.1364/OE.17.000150


View Full Text Article

Enhanced HTML    Acrobat PDF (474 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel hybrid optical sensing system for standalone, chip-scale sensing applications. The hybrid optical sensing system detects any spectral shift of the microresonator sensor output by estimating the effective refractive index using maximum likelihood estimation. The performance evaluation of the proposed hybrid sensing system in the Gaussian-noise dominant environment shows excellent estimation accuracy. This innovative approach allows fully functional integrated hybrid sensing systems, offering great potential in various chip-scale sensing applications.

© 2009 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(230.5750) Optical devices : Resonators
(070.2025) Fourier optics and signal processing : Discrete optical signal processing

ToC Category:
Integrated Optics

History
Original Manuscript: November 11, 2008
Revised Manuscript: December 10, 2008
Manuscript Accepted: December 10, 2008
Published: December 23, 2008

Citation
Sang-Yeon Cho and Deva K. Borah, "Chip-scale hybrid optical sensing systems using digital signal processing," Opt. Express 17, 150-155 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-1-150


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Huque, M. R. Haider, M. Zhang, T. Oh, and S. K. Islam, "A Low Power, Low Voltage Current Read-Out Circuit for Implantable Electro-Chemical Sensors," in Proceeding of the IEEE Sensors 2007, Atlanta, GA, Oct. 2007, pp. 39-40.
  2. M. Godin, V. Tabarad-Cossa, P. Grutter, and P. Williams, "Quantitative surface stress measurements using a microcantilever," Appl. Phys. Lett. 79, 551-553 (2001). [CrossRef]
  3. S. Ghosh, A. K. Sood, and N. Kumar, "Carbon Nanotube Flow Sensors," Science 299, 1042-1044 (2003). [CrossRef] [PubMed]
  4. A. K. Sharma, R. Jha, and B. D. Gupta, "Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review," IEEE Sens. J. 7, 1118-1129 (2007). [CrossRef]
  5. P. Hua, B. J. Luff, G. R. Quigley, J. S. Wilkinson, K. Kawaguchi, "Integrated optical dual Mach-Zehnder interferometer sensor," Sens. Actuators, B Chem 87, 250-257 (2002). [CrossRef]
  6. P. Adam, J. Dostalek, J. Homola, "Multiple surface plasmon spectroscopy for study of biomolecular systems," Sens. Actuators, B Chem. 113, 774-781 (2006). [CrossRef]
  7. J. Dubendorfer, R. E. Kunz, G. Jobet, I. Moser, G. Urban, "Integrated optical pH sensor using replicated chirped grating coupler sensor chips," Sens. Actuators, B Chem,  50, 210-219 (1998). [CrossRef]
  8. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003). [CrossRef] [PubMed]
  9. M. Kwon and W. H. Steier, "Microring-resonator-based sensor measuring both the concentration and temperature of a solution," Opt Express 16, 9372-9377 (2008). [CrossRef] [PubMed]
  10. S.-Y. Cho and N. M. Jokerst, "A Polymer Microdisk Photonic Sensor Integrated Onto Silicon," IEEE Photon. Technol. Lett. 18, 2096-2098 (2006). [CrossRef]
  11. C.-Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006). [CrossRef]
  12. D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, "Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding," Opt. Express 16, 15137-15148 (2008). [CrossRef] [PubMed]
  13. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007). [CrossRef] [PubMed]
  14. B. Bhola, H.-C. Song, H. Tazawa, and W. H. Steier, "Polymer Microresonator Strain Sensors," IEEE Photon. Technol. Lett. 17, 867-868 (2005). [CrossRef]
  15. S.-Y. Cho, G. Dobbs, N. Jokerst, B. Mizaikoff, "Surface Customized Optical Microresonator Sensors for Integrated Chip-Scale Portable Sensing Applications," in Proceeding of the IEEE Sensors 2007, Atlanta, GA, Oct. 2007, pp. 651-652.
  16. I. Kiyat, C. Kocabas, and A. Aydinli, "Integrated micro ring resonator displacement sensor for scanning probe microscopies," J. Micromech. Microeng. 14, 374-381 (2004). [CrossRef]
  17. S.-Y. Cho, G. Dobbs, N. M. Jokerst, B. Mizaikoff, T. Cooper, "Optical Microring Resonator Sensors with Selective Membrane Surface Customization," in Proceeding of Conference on Lasers and Electro-Optics (CLEO) 2007, Baltimore, Maryland, Paper CWE4.
  18. A. Yalcin, K. C. Popat, J. C. Aldridge, J.C. T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, B. B. Goldberg, "Optical sensing of biomolecules using microring resonators," IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006). [CrossRef]
  19. I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008). [CrossRef] [PubMed]
  20. S. R. Bhalotra, H. L. Kung, J. Fu, N. C. Helman, O. Levi, D. A. B. Miller, J. S. HarrisJr., "Integrated standing-wave transform spectrometer for near infrared optical analysis," in Proceedings of 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Glasgow, UK, Nov 10-14 2002, pp. 105-106.
  21. O. Momtahan, C. R. Hsieh, A. Adibi, and D. J. Brady, "Analysis of slitless holographic spectrometers implemented by spherical beam volume holograms," Appl. Opt. 45, 2955-2964 (2006). [CrossRef] [PubMed]
  22. S.-Y. Cho and N. M. Jokerst, "Integrated Thin Film Photodetectors with Vertically Coupled Microring Resonators for Chip Scale Spectral Analysis," Appl. Phys. Lett. 90, 101105 (2007). [CrossRef]
  23. L. Scharf, Statistical Signal Processing Detection, Estimation, and Time Series Analysis, (Addison-Wesley Publishing Company Inc., 1991).
  24. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15, 9139-9146 (2007). [CrossRef] [PubMed]
  25. H. Takahashi, K. Oda, H. Toba, and Y. Inoue, "Transmission Characteristics of Arrayed Waveguide N × N Wavelength Multiplexer," J. Lightwave Technol. 13, 447-455 (1995). [CrossRef]
  26. A. Gholipour and R. Faraji-Dana, "Nonuniform Arrayed Waveguide Gratings for Flat-Top Passband Transfer Function," J. Lightwave Technol. 25, 3678-3685 (2007). [CrossRef]
  27. M. K. Smit and C. V. Dam, "PHASAR-Based WDM-Devices: Principles, Design and Applications," IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996). [CrossRef]
  28. Product literature, "100GHz, Wideband (Flat Top) Arrayed Waveguide Grating (AWG)." From JDS Uniphase Corporation. http://www.jdsunph.com/product-literature/awg100w_ds_cc_ae_031306.pdf.
  29. S. J. Choi, K. Djordjev, S. J. Choi, and P. D. Dapkus, "Microdisk Lasers Vertically Coupled to Ouput Waveguides," IEEE Photon. Technol. Lett. 15, 1330-1332 (2003). [CrossRef]
  30. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000). [CrossRef]
  31. S.-Y. Cho and R. Soref, "Interferometric microring-resonant 2 x 2 optical switches," Opt. Express 16, 13304-13314 (2008). [CrossRef] [PubMed]
  32. S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80, 908-910 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited