OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 1 — Jan. 5, 2009
  • pp: 163–169

Demonstration of a cavity coupler based on a resonant waveguide grating

Frank Brückner, Daniel Friedrich, Tina Clausnitzer, Oliver Burmeister, Michael Britzger, Ernst-Bernhard Kley, Karsten Danzmann, Andreas Tünnermann, and Roman Schnabel  »View Author Affiliations


Optics Express, Vol. 17, Issue 1, pp. 163-169 (2009)
http://dx.doi.org/10.1364/OE.17.000163


View Full Text Article

Enhanced HTML    Acrobat PDF (311 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Thermal noise in multilayer optical coatings may not only limit the sensitivity of future gravitational wave detectors in their most sensitive frequency band but is also a major impediment for experiments that aim to reach the standard quantum limit or to cool mechanical systems to their quantum ground state. Here, we present the experimental realization and characterization of a cavity coupler, which is based on a surface relief guided-mode resonant grating. Since the required thickness of the dielectric coating is dramatically decreased compared to conventional mirrors, it is expected to provide low mechanical loss and, thus, low thermal noise. The cavity coupler was incorporated into a Fabry-Perot resonator together with a conventional high quality mirror. The finesse of this cavity was measured to be F = 657, which corresponds to a coupler reflectivity of R = 99.08 %.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.3990) Optical devices : Micro-optical devices
(230.4040) Optical devices : Mirrors
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 7, 2008
Revised Manuscript: December 10, 2008
Manuscript Accepted: December 17, 2008
Published: December 24, 2008

Citation
Frank Brückner, Daniel Friedrich, Tina Clausnitzer, Oliver Burmeister, Michael Britzger, Ernst-Bernhard Kley, Karsten Danzmann, Andreas Tünnermann, and Roman Schnabel, "Demonstration of a cavity coupler based on a resonant waveguide grating," Opt. Express 17, 163-169 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-1-163


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, "Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae," Phys. Lett. A 264,1-10 (1999). [CrossRef]
  2. H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, "Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and output optics," Phys.Rev D. 65,022002 (2001). [CrossRef]
  3. P. Aufmuth and K. Danzmann, "Gravitational wave detectors," New J. Phys. 7,202 (2005). [CrossRef]
  4. G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, "Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings," Class. Quantum Grav. 19,897-917 (2002). [CrossRef]
  5. P. F. Cohadon, A. Heidmann, and M. Pinard, "Cooling of a Mirror by Radiation Pressure," Phys. Rev. Lett. 83,3174-3177 (1999). [CrossRef]
  6. T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, "An All-Optical Trap for a Gram-Scale Mirror," Phys. Rev. Lett. 98,150802 (2007). [CrossRef] [PubMed]
  7. H. Müller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, and Y. Chen, "Entanglement of Macroscopic Test Masses and the Standard Quantum Limit in Laser Interferometry," Phys. Rev. Lett. 100,013601 (2008). [CrossRef] [PubMed]
  8. Y. Levin, "Internal thermal noise in the LIGO test masses: A direct approach," Phys. Rev. D 57,659-663 (1998). [CrossRef]
  9. F. Seifert, P. Kwee, M. Heurs, B. Willke, and K. Danzmann, "Laser power stabilization for second-generation gravitational wave detectors," Opt. Lett. 31,2000-2002 (2006). [CrossRef] [PubMed]
  10. G. Rempe, R. J. Thompson, H. J. Kimble, R. Lalezari, "Measurement of ultralow losses in an optical interferometer," Opt. Lett. 17, 363-365 (1992). [CrossRef] [PubMed]
  11. J. Agresti, G. Castaldi, R. DeSalvo, V. Galdi, V. Pierro, and I. M. Pinto, "Optimized multilayer dielectric mirror coatings for gravitational wave interferometers," Proc. SPIE 6286, (2006). [CrossRef]
  12. G. M. Harry, H. Armandula, E. Black, D. R. M. Crooks, G. Cagnoli, J. Hough, P. Murray, S. Reid, S. Rowan, P. Sneddon, M. M. Fejer, R. Route, and S. D. Penn, "Thermal noise from optical coatings in gravitational wave detectors," Appl. Opt. 45,1569-1574 (2006). [CrossRef] [PubMed]
  13. S. Goßler, J. Cumpston, K. McKenzie, C. M. Mow-Lowry, M. B. Gray, and D. E. McClelland, "Coating-free mirrors for high precision interferometric experiments," Phys. Rev. A 76,053810 (2007). [CrossRef]
  14. V. B. Braginsky and S. P. Vyatchanin, "Corner reflectors and quantum-non-demolition measurements in gravitational wave antennae," Phys. Lett. A 324,345-360 (2004) [CrossRef]
  15. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, "Total reflection of light from a corrugated surface of a dielectric waveguide," Sov. J. Quantum Electron. 15,886-887 (1985). [CrossRef]
  16. R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61,1022-1024 (1992). [CrossRef]
  17. A. Sharon, D. Rosenblatt, and A. A. Friesem, "Resonant grating-waveguide structures for visible and nearinfrared radiation," J. Opt. Soc. Am. A 14,2985-2993 (1997). [CrossRef]
  18. R. Nawrodt, A. Zimmer, T. Koettig, T. Clausnitzer, A. Bunkowski, E.-B. Kley, R. Schnabel, K. Danzmann, W. Vodel, A. T¨unnermann, and P. Seidel, "Mechanical Q-factor measurements on a test mass with a structured surface," New J. Phys. 9,225 (2007). [CrossRef]
  19. A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, "High reflectivity grating waveguide coatings for 1064 nm," Class. Quantum Grav. 23,7297-7303 (2006). [CrossRef]
  20. F. Br¨uckner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. T¨unnermann, and R. Schnabel, "Monolithic dielectric surfaces as new low-loss light-matter interfaces," Opt. Lett. 33,264-266 (2008). [CrossRef] [PubMed]
  21. E. Bisaillon, D. Tan, B. Faraji, A. G. Kirk, L. Chrowstowski, and D. Plant, "High reflectivity air-bridge subwavelength grating reflector and Fabry-Perot cavity in AlGaAs/GaAs," Opt. Express 14,2573-2582 (2006). [CrossRef] [PubMed]
  22. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71,811-818 (1981). [CrossRef]
  23. T. Clausnitzer, T. K¨ampfe, E.-B. Kley, A. Tünnermann, U. Peschel, A. V. Tishchenko, and O. Parriaux, "An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings," Opt. Express 13,10448-10456 (2005). [CrossRef] [PubMed]
  24. E. Popov, M. Nevire, B. Gralak, and G. Tayeb, "Staircase approximation validity for arbitrary-shaped gratings," J. Opt. Soc. Am. A 19,33-42 (2002). [CrossRef]
  25. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser Phase and Frequency Stabilization using an Optical Resonator," Appl. Phys. B. 31,97-105 (1983). [CrossRef]
  26. B. A. Usievich, V. A. Sychugov, J. K. H. Nurligareev, and O. Parriaux, "Multilayer resonances sharpened by grating waveguide resonance," Opt. Quantum Electron. 36,109-117 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited