OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 1 — Jan. 5, 2009
  • pp: 170–177

Stopping light by an air waveguide with anisotropic metamaterial cladding

Tian Jiang, Junming Zhao, and Yijun Feng  »View Author Affiliations

Optics Express, Vol. 17, Issue 1, pp. 170-177 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1255 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a detailed study of oscillating modes in a slab waveguide with air core and anisotropic metamaterial cladding. It is shown that, under specific dielectric configurations, slow and even stopped electromagnetic wave can be supported by such an air waveguide. We propose a linearly tapped waveguide structure that could lead the propagating light to a complete standstill. Both the theoretical analysis and the proposed waveguide have been validated by full-wave simulation based on finite-difference time-domain method.

© 2009 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7400) Optical devices : Waveguides, slab
(260.2110) Physical optics : Electromagnetic optics
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: October 8, 2008
Revised Manuscript: November 28, 2008
Manuscript Accepted: December 11, 2008
Published: December 24, 2008

Tian Jiang, Junming Zhao, and Yijun Feng, "Stopping light by an air waveguide with anisotropic metamaterial cladding," Opt. Express 17, 170-177 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Lukin and A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001). [CrossRef] [PubMed]
  2. E. Gehrig, M. van der Poel, J. Mørk, and O. Hess, "Dynamic Spatiotemporal Speed Control of Ultrashort Pulses in Quantum-Dot SOAs," IEEE J. Quant. Electron. 42, 1047-1054 (2006). [CrossRef]
  3. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  4. A. Melloni, F. Morichetti, and M. Martinelli, "Optical slow wave structures," Opt. Photon. News 14, 44 (2003). [CrossRef]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and Slow Light Propagation in a Room-Temperature Solid," Science 301, 200-202 (2003). [CrossRef] [PubMed]
  6. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005). [CrossRef] [PubMed]
  7. K. Lee and N. M. Lawandy, "Optically induced pulse delay in a solid-state Raman amplifier," Appl. Phys. Lett. 78, 703-705 (2001). [CrossRef]
  8. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  9. Z. Fu, Q. Gan, Y. J. Ding, and F. J. Bartoli, "From waveguiding to spatial localization of THz waves within a plasmonic metallic grating," IEEE J. Sel. Top. Quantum Electron. 14, 486-490 (2008). [CrossRef]
  10. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures," Phys. Rev. Lett. 100, 256803 (2008). [CrossRef] [PubMed]
  11. J. He and S. He, "Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate," IEEE Microw. Wire. Compon. Lett. 16, 96-98 (2005). [CrossRef]
  12. K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, "Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed heterostructures," Appl. Phys. Lett. 89, 201103 (2006). [CrossRef]
  13. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, "'Trapped rainbow' storage of light in metamaterials," Nature 450, 397-401 (2007). [CrossRef] [PubMed]
  14. K. Y. Kim, "Tunnelling-induced temporary light trapping in negative-index-clad slab waveguide," Jpn. J. Appl. Phys. 47, 4843-4845 (2008). [CrossRef]
  15. Y. J. Huang, W. T. Lu, and S. Sridhar, "Nanowire waveguide made from extremely anisotropic metamaterials," Phys. Rev. A 77, 063836 (2008). [CrossRef]
  16. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007). [CrossRef]
  17. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008). [CrossRef] [PubMed]
  18. T. Jiang and Y. J. Feng, "Slow and frozen waves in a planar air waveguide with anisotropic metamaterial cladding," in Proceedings of the 2008 International Conference on Microwave and Millimeter Wave Technology (Nanjing, China, Apr. 21-24, 2008), pp. 1627-1630. [CrossRef]
  19. J. He, Y. Jin, Z. Hong, and S. He, "Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding," Opt. Express 16, 11077(2008). [CrossRef] [PubMed]
  20. C. Li, Q. Sui, and F. Li, "Complex guided wave solutions of grounded dielectric slab made of metamaterials," PIER 51, 187-195 (2005). [CrossRef]
  21. W. Shu and J. M. Song, "Complete mode spectrum of a grounded dielectric slab with double negative metamaterials," PIER 65, 103-123 (2006). [CrossRef]
  22. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).
  23. B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116(2006). [CrossRef]
  24. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, "Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media," J. Opt. Soc. Am. B 23, 498-505 (2006). [CrossRef]
  25. D. W. Lynch and W. R. Hunter, Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic Press, New York, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (4075 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited