OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 1 — Jan. 5, 2009
  • pp: 185–192

Plasmon-enhanced emission from optically-doped MOS light sources

Aaron C. Hryciw, Young Chul Jun, and Mark L. Brongersma  »View Author Affiliations


Optics Express, Vol. 17, Issue 1, pp. 185-192 (2009)
http://dx.doi.org/10.1364/OE.17.000185


View Full Text Article

Enhanced HTML    Acrobat PDF (486 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We evaluate the spontaneous emission rate (Purcell) enhancement for optically-doped metal–dielectric–semiconductor light-emitting structures by considering the behavior of a semiclassical oscillating point dipole placed within the dielectric layer. For a Ag–SiO2–Si structure containing emitters at the center of a 20-nm-thick SiO2 layer, spontaneous emission rate enhancements of 40 to 60 can be reached in the wavelength range of 600 to 1800 nm, far away from the surface plasmon resonance; similar enhancements are also possible if Al is used instead of Ag. For dipoles contained in the thin oxide layer of a Ag–SiO2–Si–SiO2 structure, the emission exhibits strong preferential coupling to a single well-defined Si waveguide mode. This work suggests a means of designing a new class of power-efficient, high-modulation-speed, CMOS-compatible optical sources that take full advantage of the excellent electrical properties and plasmon-enhanced optical properties afforded by MOS devices.

© 2009 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(160.3900) Materials : Metals
(160.6000) Materials : Semiconductor materials
(230.6080) Optical devices : Sources
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: October 16, 2008
Revised Manuscript: December 19, 2008
Manuscript Accepted: December 22, 2008
Published: December 24, 2008

Citation
Aaron Hryciw, Young Chul Jun, and Mark L. Brongersma, "Plasmon-enhanced emission from optically-doped MOS light sources," Opt. Express 17, 185-192 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-1-185


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Jalali and S. Fathpour, "Silicon photonics," J. Lightwave Tech. 24, 4600-4615 (2006). [CrossRef]
  2. M. Lipson, "Guiding, modulating, and emitting light on silicon—Challenges and opportunities," J. Lightwave Tech. 23, 4222-4238 (2005). [CrossRef]
  3. L. Pavesi, "Will silicon be the photonic material of the third millenium?" J. Phys. Condens. Matter 15, R1169- R1196 (2003). [CrossRef]
  4. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000). [CrossRef] [PubMed]
  5. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006). [CrossRef] [PubMed]
  6. G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984). [CrossRef]
  7. W. L. Barnes, "Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices," J. Lightwave Tech. 17, 2170-2182 (1999). [CrossRef]
  8. J. Vu?kovi?, M. Loncar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 1131-1144 (2000). [CrossRef]
  9. J. S. Q. Liu and M. Brongersma, "Omnidirectional light emission via surface plasmon polaritons," Appl. Phys. Lett. 90, 091116 (2007). [CrossRef]
  10. Y. C. Jun, R. D. Kekatpure, J. S. White, and M. Brongersma, "Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures," Phys. Rev. B 78, 153111 (2008). [CrossRef]
  11. S. Wang, A. Eckau, E. Neufeld, R. Carius, and C. Buchal, "Hot electron impact excitation cross-section of Er3+ and electroluminescence from erbium-implanted silicon metal-oxide-semiconductor tunnel diodes," Appl. Phys. Lett. 71, 2824-2826 (1997). [CrossRef]
  12. K. Sun, W. J. Xu, B. Zhang, L. P. You, G. Z. Ran, and G. G. Qin, "Strong enhancement of Er3+ 1.54 ?m electroluminescence through amorphous Si nanoparticles," Nanotechnology 19, 708 (2008).
  13. A. Irrera, D. Pacifici, M. Miritello, G. Franzò, F. Priolo, F. Iacona, D. Sanfillipo, G. Di Stefano, and P. G. Fallica, "Electroluminescence properties of light emitting devices based on silicon nanocrystals," Physica E 16, 395-399 (2003). [CrossRef]
  14. P. Yeh, Optical waves in layered media, 2nd ed. (Wiley-Interscience, New York, 2005).
  15. A. D. Raki?, A. B. Djurisi?, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for verticalcavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998). [CrossRef]
  16. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, Internet Version 2008, 88th ed. (Taylor & Francis, Boca Raton, FL, 2008).
  17. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  18. G. T. Reed and A. P. Knights, Silicon photonics: an introduction (JohnWiley and Sons, Ltd., Chichester, England, 2004). [CrossRef]
  19. R. J. Walters, J. Kalkman, A. Polman, H. A. Atwater, and M. J. A. de Dood, "Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2," Phys. Rev. B 73, 132302 (2006). [CrossRef]
  20. K. S. Cho, N. M. Park, T. Y. Kim, K. H. Kim, G. Y. Sung, and J. H. Shin, "High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer", Appl. Phys. Lett. 86, 071909 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited