OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 1 — Jan. 5, 2009
  • pp: 218–227

Nanodroplet real-time PCR system with laser assisted heating

Hanyoup Kim, Sanhita Dixit, Christopher J. Green, and Gregory W. Faris  »View Author Affiliations

Optics Express, Vol. 17, Issue 1, pp. 218-227 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2057 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the successful application of low-power (~30 mW) laser radiation as an optical heating source for high-speed real-time polymerase chain reaction (PCR) amplification of DNA in nanoliter droplets dispersed in an oil phase. Light provides the heating, temperature measurement, and Taqman real-time readout in nanoliter droplets on a disposable plastic substrate. A selective heating scheme using an infrared laser appears ideal for driving PCR because it heats only the droplet, not the oil or plastic substrate, providing fast heating and completing the 40 cycles of PCR in 370 seconds. No microheaters or microfluidic circuitry were deposited on the substrate, and PCR was performed in one droplet without affecting neighboring droplets. The assay performance was quantitative and its amplification efficiency was comparable to that of a commercial instrument.

© 2009 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 11, 2008
Revised Manuscript: December 18, 2008
Manuscript Accepted: December 20, 2008
Published: December 24, 2008

Virtual Issues
Vol. 4, Iss. 3 Virtual Journal for Biomedical Optics

Hanyoup Kim, Sanhita Dixit, Christopher J. Green, and Gregory W. Faris, "Nanodroplet real-time PCR system with laser assisted heating," Opt. Express 17, 218-227 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, "Optofluidic control using photothermal nanoparticles," Nature Mater. 5, 27-32 (2006). [CrossRef]
  2. C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, "Thermocapillary valve for droplet production and sorting," Phys. Rev. E 75, 046302 (2007). [CrossRef]
  3. K. T. Kotz, K. A. Noble, and G. W. Faris, "Optical microfluidics," Appl. Phys. Lett. 85, 2658-2660 (2004). [CrossRef]
  4. S. Rybalko, N. Magome, and K. Yoshikawa, "Forward and backward laser-guided motion of an oil droplet," Phys. Rev. E 70, 046301 (2004). [CrossRef]
  5. A. D. Griffiths and D. S. Tawfik, "Miniaturising the laboratory in emulsion droplets," Trends Biotech. 24, 395-402 (2006). [CrossRef]
  6. S. Haeberle and R. Zengerle, "Microfluidic platforms for lab-on-a-chip applications," Lab Chip 7, 1094-1110 (2007). [CrossRef] [PubMed]
  7. S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, "Droplet microfluidics," Lab Chip 8, 198-220 (2008). [CrossRef] [PubMed]
  8. K. T. Kotz, Y. Gu, and G. W. Faris, "Optically addressed droplet-based protein assay," J. Am. Chem. Soc. 127, 5736-5737 (2005). [CrossRef] [PubMed]
  9. C. N. Baroud, M. R. de Saint Vincent, and J. P. Delville, "An optical toolbox for total control of droplet microfluidics," Lab Chip 7, 1029-1033 (2007). [CrossRef] [PubMed]
  10. N. R. Beer, B. J. Hindson, E. K. Wheeler, S. B. Hall, K. A. Rose, I. M. Kennedy, and B. W. Colston, "On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets," Anal. Chem. 79, 8471-8475 (2007). [CrossRef] [PubMed]
  11. K. D. Dorfman, M. Chabert, J. H. Codarbox, G. Rousseau, P. de Cremoux, and J. L. Viovy, "Contamination-free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications," Anal. Chem. 77, 3700-3704 (2005). [CrossRef] [PubMed]
  12. Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, "Planar chip device for PCR and hybridization with surface acoustic wave pump," Lab Chip 5, 308-317 (2005). [CrossRef] [PubMed]
  13. P. Neuzil, C. Zhang, J. Pipper, S. Oh, and L. Zhuo, "Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes," Nucleic Acids Res. 34, e77 (2006). [CrossRef]
  14. K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, and H. Misawa, "A heater-integrated transparent microchannel chip for continuous-flow PCR," Sens. Actuators B 84, 283-289 (2002). [CrossRef]
  15. B. C. Giordano, J. Ferrance, S. Swedberg, A. F. R. Hühmer, and J. P. Landers, "Polymerase chain reaction in polymeric Microchips:DNA amplification in less than 240 seconds," Anal. Biochem. 291, 124-132 (2001). [CrossRef] [PubMed]
  16. R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline, and J. P. Landers, "Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA," Anal. Chem. 70, 4361-4368 (1998). [CrossRef] [PubMed]
  17. M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, "Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets," Anal. Chem. 77, 1539-1544 (2005). [CrossRef] [PubMed]
  18. M. He, C. Sun, and D. Chiu, "Concentrating solutes and nanoparticles within individual aqueous microdroplets," Anal. Chem. 76, 1222-1227 (2004). [CrossRef] [PubMed]
  19. H. Terazono, A. Hattori, H. Takei, K. Takeda, and K. Yasuda, "Development of 1480nm photothermal high-speed real-time polymerase chain reaction system for rapid nucleotide recognition," Jpn. J. Appl. Phys. 47, 5212-5216 (2008). [CrossRef]
  20. H. Kim, S. Vishniakou, and G. W. Faris, "Petri dish PCR: Laser-heated reactions in nanoliter droplet arrays" Lab Chip (to be published).
  21. L. Kou, D. Labrie, and P. Chylek, "Refractive indices of water and ice in the 0.65- to 2.5-?m spectral range," Appl. Opt. 32, 3531-3540 (1993). [CrossRef] [PubMed]
  22. J. Coppeta and C. Rogers, "Dual emission laser induced fluorescence for direct planar scalar behavior measurements," Exp. Fluids 25, 1-15 (1998). [CrossRef]
  23. D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117-4123 (2001). [CrossRef] [PubMed]
  24. M. N. Slyadnev, Y. Tanaka, M. Tokeshi, and T. Kitamori, "Photothermal temperature control of a chemical reaction on a microchip using an infrared diode laser," Anal. Chem. 73, 4037-4044 (2001). [CrossRef] [PubMed]
  25. B. Vogelstein and K. W. Kinzler, "Digital PCR," Proc. Natl. Acad. Sci. USA 96, 9236-9241 (1999). [CrossRef] [PubMed]
  26. K. Bross and W. Krone, "On the number of ribosomal RNA genes in man," Human Genet. 14, 137-141 (1972). [CrossRef]
  27. R. G. Worton, J. Sutherland, J. E. Sylvester, H. F. Willard, S. Bodrug, I. Dubé, C. Duff, V. Kean, P. N. Ray, and R. D. Schmickel, "Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5' end," Science. 239, 64-68. (1988). [CrossRef] [PubMed]
  28. P. H. Dear and P. R. Cook, "Cellular gels. Purifying and mapping long DNA molecules," Biochem J. 273, 695-699. (1991). [PubMed]
  29. B. C. Delidow, J. P. Lynch, J. J. Peluso, and B. A. White, "Polymerase chain reaction," in Basic DNA and RNA Protocols, A. Harwood, ed. (Humana Press, Totowa, NJ, 1996), pp. 275-292. [CrossRef]
  30. H. A. Druett, "Equilibrium temperature of a small sphere suspended in air and exposed to solar radiation," Nature 201, 611 (1964). [CrossRef]
  31. S. Goodhew and R. Griffiths, "Analysis of thermal-probe measurements using an iterative method to give sample conductivity and diffusivity data," Applied Energy 77, 205-223 (2004). [CrossRef]
  32. M. M. Kiss, L. Ortoleva-Donnelly, N. R. Beer, J. Warner, C. G. Bailey, B. W. Colston, J. M. Rothberg, D. R. Link, and J. H. Leamon, "High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets," Anal Chem 80, 8975-8981 (2008). [CrossRef]
  33. J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008). [CrossRef] [PubMed]
  34. S. Köster, F. E. Angilè, H. Duan, J. J. Agrestil, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffiths, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab Chip 8, 1110-1115 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig 1. Fig 2. Fig 3.
Fig 4. Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited