OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 1 — Jan. 5, 2009
  • pp: 304–313

Electro-optical modulator in a polymer-infiltrated silicon slotted photonic crystal waveguide heterostructure resonator

Jan Hendrik Wülbern, Alexander Petrov, and Manfred Eich  »View Author Affiliations


Optics Express, Vol. 17, Issue 1, pp. 304-313 (2009)
http://dx.doi.org/10.1364/OE.17.000304


View Full Text Article

Enhanced HTML    Acrobat PDF (735 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel concept of a compact, ultra fast electro-optic modulator, based on photonic crystal resonator structures that can be realized in two dimensional photonic crystal slabs of silicon as core material employing a nonlinear optical polymer as infiltration and cladding material. The novel concept is to combine a photonic crystal heterostructure cavity with a slotted defect waveguide. The photonic crystal lattice can be used as a distributed electrode for the application of a modulation signal. An electrical contact is hence provided while the optical wave is kept isolated from the lossy metal electrodes. Thereby, well known disadvantages of segmented electrode designs such as excessive scattering are avoided. The optical field enhancement in the slotted region increases the nonlinear interaction with an external electric field resulting in an envisaged switching voltage of approximately 1 V at modulation speeds up to 100 GHz.

© 2009 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

History
Original Manuscript: November 7, 2008
Revised Manuscript: December 23, 2008
Manuscript Accepted: December 23, 2008
Published: January 2, 2009

Citation
Jan H. Wülbern, Alexander Petrov, and Manfred Eich, "Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator," Opt. Express 17, 304-313 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-1-304


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Shacham, K. Bergman, and L. P. Carloni, "On the Design of a Photonic Network-on-Chip," First International Symposium on Networks-on-Chip (IEEE, 2007) 53-64.
  2. T. Asano, B. S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006). [CrossRef]
  3. I. Park, H. S. Lee, H. J. Kim, K. M. Moon, S. G. Lee, B. H. O, S. G. Park, and E. H. Lee, "Photonic crystal power-splitter based on directional coupling," Opt. Express 12, 3599-3604 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-15-3599. [CrossRef] [PubMed]
  4. A. Y. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866-4868 (2004). [CrossRef]
  5. A. Y. Petrov and M. Eich, "Dispersion compensation with photonic crystal line-defect waveguides," IEEE J. Sel. Areas Commun. 23, 1396-1401 (2005). [CrossRef]
  6. S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Physical Review B 62, 8212-8222 (2000). [CrossRef]
  7. B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimba, "A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-mu m CMOS SOI technology," IEEE J. Solid-State Circuits 41, 2945-2955 (2006). [CrossRef]
  8. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  9. M. Lipson, "Compact electro-optic modulator's on a silicon chip," IEEE J. Sel. Top. Quantum Electron. 12, 1520-1526 (2006). [CrossRef]
  10. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006). [CrossRef] [PubMed]
  11. T. D. Kim, J. W. Kang, J. Luo, S. H. Jang, J. W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K. Jen, "Ultralarge and Thermally Stable Electro-Optic Activities from Supramolecular Self-Assembled Molecular Glasses," J. Am. Chem. Soc. 129, 488-489 (2007). [CrossRef] [PubMed]
  12. J. D. Luo, Y. J. Cheng, T. D. Kim, S. Hau, S. H. Jang, Z. W. Shi, X. H. Zhou, and A. K. Y. Jen, "Facile synthesis of highly efficient phenyltetraene-based nonlinear optical chromophores for electrooptics," Organic Lett. 8, 1387-1390 (2006). [CrossRef]
  13. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer," Science 298, 1401-1403 (2002). [CrossRef] [PubMed]
  14. J. H. Wülbern, M. Schmidt, M. Eich, U. Hübner, R. Boucher, F. Marlow, and W. Volksen, "Omnidirectional photonic band gap in polymer photonic crystal slabs," Appl. Phys. Lett. 91, 221104 (2007). [CrossRef]
  15. C. Liguda, G. Bottger, A. Kuligk, R. Blum, M. Eich, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, "Polymer photonic crystal slab waveguides," Appl. Phys. Lett. 78, 2434-2436 (2001). [CrossRef]
  16. G. Bottger, C. Liguda, M. Schmidt, and M. Eich, "Improved transmission characteristics of moderate refractive index contrast photonic crystal slabs," Appl. Phys. Lett. 81, 2517-2519 (2002). [CrossRef]
  17. M. Schmidt, M. Eich, U. Huebner, and R. Boucher, "Electro-optically tunable photonic crystals," Appl. Phys. Lett. 87, 121110 (2005). [CrossRef]
  18. J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, "High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide," Opt. Express 16, 4177-4191 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-4177. [CrossRef] [PubMed]
  19. T. Baehr-Jones, M. Hochberg, G. X. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, "Optical modulation and detection in slotted Silicon waveguides," Opt. Express 13, 5216-5226 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-14-5216. [CrossRef] [PubMed]
  20. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  21. A. Di Falco, L. O'Faolain, and T. F. Krauss, "Dispersion control and slow light in slotted photonic crystal waveguides," Appl. Phys. Lett. 92, 83501 (2008). [CrossRef]
  22. T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, and A. Jen, "Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V," Appl. Phys. Lett. 92, 163303 (2008). [CrossRef]
  23. Avaible atwww.cst.com.
  24. T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, "Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab," Opt. Express 16, 13809-13817 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13809. [CrossRef] [PubMed]
  25. J. M. Lee, D. J. Kim, G. H. Kim, O. K. Kwon, K. J. Kim, and G. Kim, "Controlling temperature dependence of silicon waveguide using slot structure," Opt. Express 16, 1645-1652 (2008). [CrossRef] [PubMed]
  26. J. P. Hugonin, P. Lalanne, T. P. White, and T. E. Krauss, "Coupling into slow-mode photonic crystal waveguides," Opt. Letters 32, 2638-2640 (2007). [CrossRef]
  27. G. H. Kim, Y. H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 12, 6624-6631 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-26-6624. [CrossRef] [PubMed]
  28. K. K. McLauchlan and S. T. Dunham, "Analysis of a compact modulator incorporating a hybrid silicon/electro-optic polymer waveguide," IEEE J. Sel. Top. Quantum Electron. 12, 1455-1460 (2006). [CrossRef]
  29. D. Widman, H. Mader, and H. Friedrich, Technology of integrated circuits (Springer, 2000).
  30. R. Soref and B. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987). [CrossRef]
  31. R. Blum, M. Sprave, J. Sablotny, and M. Eich, "High-electric-field poling of nonlinear optical polymers," J. Opt. Soc. Am. B 15, 318-328 (1998). [CrossRef]
  32. M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, "Corona poling and real-time second-harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer," J. Appl. Phys. 66, 2559-2567 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited