OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 1 — Jan. 5, 2009
  • pp: 337–345

Electromagnetic wave propagation in a Ag nanoparticle-based plasmonic power divider

Iftikhar Ahmed, Ching Eng PNG, Er-Ping Li, and Rüdiger Vahldieck  »View Author Affiliations


Optics Express, Vol. 17, Issue 1, pp. 337-345 (2009)
http://dx.doi.org/10.1364/OE.17.000337


View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper a new silver (Ag) nanoparticle-based structure is presented which shows potential as a device for front end applications, in nano-interconnects or power dividers. A novel oxide bar ensures waveguiding and control of the signal strength with promising results. The structure is simulated by the two dimensional finite difference time domain (FDTD) method considering TM polarization and the Drude model. The effect of different wavelengths, material loss, gaps and particle sizes on the overall performance is discussed. It is found that the maximum signal strength remains along the Ag metallic nanoparticles and can be guided to targeted end points.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 11, 2008
Revised Manuscript: December 19, 2008
Manuscript Accepted: December 19, 2008
Published: January 2, 2009

Citation
Iftikhar Ahmed, Ching Eng PNG, Er-Ping Li, and Rüdiger Vahldieck, "Electromagnetic wave propagation in a Ag nanoparticle-based plasmonic power divider," Opt. Express 17, 337-345 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-1-337


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. L. Brongersma and G. Kik, Surface Plasmon Nanophotonics; Springer series in optical science, (2007).
  2. M. Gerken, N. K. Dhar, A. K. Dutta, and M. S. Islam, Nanophotonics for Communication: Materials, Devices, and Systems III, SPIE Society (2006).
  3. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333, (1998). [CrossRef]
  4. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002). [CrossRef]
  5. S. A. Maier and H. A. J. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-011110 (2005). [CrossRef]
  6. Z. Y. Zhang and Y. P. Zhao, "Tuning the optical absorption properties of Ag nanorods by their topologic shapes: A discrete dipole approximation calculation," Appl. Phys. Lett. 89, 023110 - 023113 (2006). [CrossRef]
  7. Y. Xia and N. J. Halas, "Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures," MRS Bulletin 30, 338 - 348 (2005). [CrossRef]
  8. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, "Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters," Phys. Rev. Lett. 72, 4149 - 4152 (1994). [CrossRef] [PubMed]
  9. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004). [CrossRef]
  10. P. J. Kottmann and O. J. F. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. 26, 1096-1098 (2001). [CrossRef]
  11. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408- 193411 (2002). [CrossRef]
  12. K. Song and P. Mazmuder, "Surface plasmon dynamics of a metallic nano-particle," IEEE Inter. Conf. on Nanotecchnology, August 2-5, Hong Kong, 637-643 (2007).
  13. E. Hao and G. J. Schatz, "Electromagnetic fields around silver nanoparticles and dimmers," J. Chem. Phys. 120, 357-366 (2004). [CrossRef] [PubMed]
  14. S. A. Maier and H. A. J. Atwater, "Energy transport in metal nanoparticle plasmon waveguides," Mat. Res. Soc. Symp. Proc.  777. T7.1.1- T7.1.12 (2003).
  15. J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068(1999). [CrossRef]
  16. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, "Surface plasmon polariton propagation and combination in Y-shaped metallic channels," Opt. Express 13, 10795-10800 (2005). [CrossRef] [PubMed]
  17. R. Sainidou and F. J. García de Abajo, "Plasmon guided modes in nanoparticle metamaterials," Opt. Express 16, 4499-4506 (2008). [CrossRef] [PubMed]
  18. N.C. Panoiu and R. M. Osgood, "Subwavelength nonlinear plasmonic nanowire," Nano Lett. 4, 2427-2430 (2004). [CrossRef]
  19. S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002). [CrossRef]
  20. D. S. Citrin, "Coherent excitation transport in metal-nanoparticle chains," Nano Lett. 4, 1562- 1565 (2004). [CrossRef]
  21. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons,"Appl. Phys. Lett. 81, 1762 - 1764 (2002). [CrossRef]
  22. W. Namura, M. Ohtsu, T. and Yatusi, "Nanodot coupler wih a surface plasmon polariton condenser for optical far/near-field conversion," App Phys Lett. 86, 181108 -181110 (2005). [CrossRef]
  23. R. Zia, and M. L. Brongersma, "Surface plasmon polariton analogue to Young’s double-slit experiment," Nature Nanotech. 2, 426- 429 (2007). [CrossRef]
  24. A. Taflove and S. G. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Boston, Artech House, 2005).
  25. W. M. Saj, "FDTD simulation of 2D Plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Express,  13, 4818-4827 (2006) [CrossRef]
  26. T. Grosges, A. Vial, and D. Barchiesi, "Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods," Opt. Express,  13, 8483-8497 (2005). [CrossRef] [PubMed]
  27. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185 - 200 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited