OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 1 — Jan. 5, 2009
  • pp: 346–357

Slow and fast light in optical fibers using acoustooptic coupling between two co-propagating modes

Magnus W. Haakestad and Johannes Skaar  »View Author Affiliations

Optics Express, Vol. 17, Issue 1, pp. 346-357 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (387 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate numerically that acoustooptic interaction between two co-propagating modes in an optical fiber can be utilized to obtain optical delays. Both positive and negative delays of several pulse lengths can be obtained. Based on the simulations we consider relevant experimental parameters.

© 2009 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2310) Fiber optics and optical communications : Fiber optics
(230.1040) Optical devices : Acousto-optical devices
(350.5500) Other areas of optics : Propagation

ToC Category:
Slow and Fast Light

Original Manuscript: November 11, 2008
Revised Manuscript: December 9, 2008
Manuscript Accepted: December 21, 2008
Published: January 2, 2009

Magnus W. Haakestad and Johannes Skaar, "Slow and fast light in optical fibers using acoustooptic coupling between two co-propagating modes," Opt. Express 17, 346-357 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, "Optical Delay Lines Based on Optical Filters," IEEE J. Quantum Electron. 37, 525-532 (2001). [CrossRef]
  2. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis," J. Opt. Soc. Am. B 22, 1062-1074 (2005). [CrossRef]
  3. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, "Slow-Light Optical Buffers: Capabilities and Fundamental Limitations," J. Lightwave Technol. 23, 4046-4066 (2005). [CrossRef]
  4. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of Slow Light in Telecommunications," OPN 19-23 (2006). April issue.
  5. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594-598 (1999). [CrossRef]
  6. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature (London) 409, 490-493 (2001). [CrossRef]
  7. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of Ulstraslow Light Propagation in a Ruby Crystal at Room Temperature," Phys. Rev. Lett. 90 (2003). Article no. 113903. [CrossRef] [PubMed]
  8. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999). [CrossRef]
  9. R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, "Wide-Bandwidth, Tunable, Multiple-Pulse-Width Optical Delays Using Slow Light in Cesium Vapor," Phys. Rev. Lett. 98 (2007). Article no. 153601. [CrossRef] [PubMed]
  10. L. Thévenaz, "Slow and fast light in optical fibres," Nature Photon. 2, 474-481 (2008). [CrossRef]
  11. K. Y. Song, M. G. Herráez, and L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005). [CrossRef] [PubMed]
  12. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94 (2005). Article no. 153902. [CrossRef] [PubMed]
  13. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005). [CrossRef] [PubMed]
  14. D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234-6249 (2005). [CrossRef] [PubMed]
  15. Z. Zhu, D. J. Gauthier, and R. W. Boyd, "Stored Light in an Optical Fiber via Stimulated Brillouin Scattering," Science 318, 1748-1750 (2007). [CrossRef] [PubMed]
  16. T. Erdogan, "Fiber Grating Spectra," J. Lightwave Technol. 15, 1277-1294 (1997). [CrossRef]
  17. S. Longhi, M. Marano, M. Belmonte, and P. Laporta, "Superluminal Pulse Propagation in Linear and Nonlinear Photonic Grating Structures," IEEE J. Sel. Top. Quantum Electron. 9, 4-16 (2003). [CrossRef]
  18. D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, "Slow light in periodic superstructure Bragg gratings," Phys. Rev. E (2005). Article no. 056605.
  19. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, "Dispersionless slow light using gap solitons," Nature Physics 2, 775 - 780 (2006). [CrossRef]
  20. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, "All-fiber acousto-optic frequency shifter," Opt. Lett. 11, 389-391 (1986). [CrossRef] [PubMed]
  21. H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and Optical Interaction of Guided Acoustic Waves in Two-Mode Optical Fibers," J. Lightwave Technol. 6, 428-436 (1988). [CrossRef]
  22. K. J. Lee, H. C. Park, H. S. Park, and B. Y. Kim, "Highly efficient all-fiber tunable polarization filter using torsional acoustic wave," Opt. Express 15, 12,362-12,367 (2007).
  23. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  24. C. G. B. Garrett and D. E. McCumber, "Propagation of a Gaussian Light Pulse through an Anomalous Dispersion Medium," Phys. Rev. A 1, 305-313 (1970).
  25. S. Chu and S. Wong, "Linear Pulse Propagation in an AbsorbingMedium," Phys. Rev. Lett. 48, 738-741 (1982). [CrossRef]
  26. D. R. Solli, C. F. McCormick, C. Ropers, J. J. Morehead, R. Y. Chiao, and J. M. Hickmann, "Demonstration of Superluminal Effects in an Absorptionless, Nonreflective System," Phys. Rev. Lett. 91 (2003). Article no. 143906. [CrossRef] [PubMed]
  27. N. Brunner, V. Scarani, M. Wegmüller, M. Legré, and N. Gisin, "Direct measurement of superluminal group velocity and signal velocity in an optical fiber," Phys. Rev. Lett. 93 (2004). Article no. 203902. [CrossRef] [PubMed]
  28. A. B. Matsko, D. V. Strekalov, and L. Maleki, "On the dynamic range of optical delay lines based on coherent atomic media," Opt. Express 13, 2210-2223 (2005). [CrossRef] [PubMed]
  29. D. A. B. Miller, "Fundamental Limit to Linear One-Dimensional Slow Light Structures," Phys. Rev. Lett. 99 (2007). Article no. 203903. [CrossRef] [PubMed]
  30. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continous Media (Elsevier, Amsterdam, 1984).
  31. J. S. Toll, "Causality and the Dispersion Relation: Logical Foundations," Phys. Rev. 104, 1760-1770 (1956). [CrossRef]
  32. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71 (2005). Article no. 023801.
  33. R. W. Boyd and P. Narum, "Slow- and fast-light: fundamental limitations," J. Mod. Opt. 54, 2403-2411 (2007). [CrossRef]
  34. A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill, New York, 1962).
  35. J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005). [CrossRef] [PubMed]
  36. S. Ramachandran, "Dispersion-Tailored Few-Mode Fibers: A Versatile Platform for In-Fiber Photonic Devices," J. Lightwave Technol. 23, 3426-3443 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited