OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 1 — Jan. 5, 2009
  • pp: 46–54

Periodic metallo-dielectric structure in diamond

M. Shimizu, Y. Shimotsuma, M. Sakakura, T. Yuasa, H. Homma, Y. Minowa, K. Tanaka, K. Miura, and K. Hirao  »View Author Affiliations


Optics Express, Vol. 17, Issue 1, pp. 46-54 (2009)
http://dx.doi.org/10.1364/OE.17.000046


View Full Text Article

Enhanced HTML    Acrobat PDF (646 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Intense ultrashort light pulses induce three dimensional localized phase transformation of diamond. Photoinduced amorphous structures have electrical conducting properties of a maximum of 64 S/m based on a localized transition from sp3 to sp2 in diamond. The laser parameters of fluence and scanning speed affect the resultant electrical conductivities due to recrystallization and multi-filamentation phenomena. We demonstrate that the laser-processed diamond with the periodic cylinder arrays have the characteristic transmission properties in terahertz region, which are good agreement with theoretical calculations. The fabricated periodic structures act as metallo-dielectric photonic crystal.

© 2009 Optical Society of America

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(320.7090) Ultrafast optics : Ultrafast lasers
(350.3390) Other areas of optics : Laser materials processing
(050.5298) Diffraction and gratings : Photonic crystals
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Photonic Crystals

History
Original Manuscript: September 9, 2008
Revised Manuscript: October 14, 2008
Manuscript Accepted: November 3, 2008
Published: December 22, 2008

Citation
M. Shimizu, Y. Shimotsuma, M. Sakakura, T. Yuasa, H. Homma, Y. Minowa, K. Tanaka, K. Miura, and K. Hirao, "Periodic metallo-dielectric structure in diamond," Opt. Express 17, 46-54 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-1-46


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. K. Sundaram and E. Mazur, "Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses," Nature Mater. 1, 217-224 (2002). [CrossRef]
  2. H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C. -Y. Ruan, and A. H. Zewail, "Direct Imaging of Transient Molecular Structures with Ultrafast Diffraction," Science 291, 458-462 (2001). [CrossRef] [PubMed]
  3. B. B. Hu, X. -C. Zhang, and D. H. Auston, "Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs," Phys. Rev. Lett. 67, 2709-2712 (1991). [CrossRef] [PubMed]
  4. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996). [CrossRef] [PubMed]
  5. E. N. Glezer and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. 71, 882-884 (1997). [CrossRef]
  6. M. F. Yanik, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, "Functional regeneration after laser axotomy," Nature 432, 822 (2004). [CrossRef] [PubMed]
  7. H. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, M. Misawa, and J. Nishii, "Arbitrary-lattice photonic crystals created by multiphoton microfabrication," Opt. Lett. 26, 325-327 (2001). [CrossRef]
  8. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405-1-4 (2003). [CrossRef] [PubMed]
  9. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994). [CrossRef]
  10. C. V. Shank, R. Yen, and C. Hirlimann, "Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon," Phys. Rev. Lett. 50, 454-457 (1983). [CrossRef]
  11. H. W. K. Tom, G. D. Aumiller, and C. H. Brito-Cruz, "Time-resolved study of laser-induced disorder of Si surfaces," Phys. Rev. Lett. 60, 1438-1441 (1988). [CrossRef] [PubMed]
  12. P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, "Ultrafast electronic disordering during femtosecond laser melting of GaAs," Phys. Rev. Lett. 67, 1023-1026 (1991). [CrossRef] [PubMed]
  13. S. V. Govorkov, T. Schröder, I. L. Shumay, and P. Heist, "Transient gratings and second-harmonic probing of the phase transformation of a GaAs surface under femtosecond laser irradiation," Phys. Rev. B 46, 6864-6868 (1992). [CrossRef]
  14. I. L. Shumay and U. Höfer, "Phase transformations of an InSb surface induced by strong femtosecond laser pulses," Phys. Rev. B 53, 15878-15884 (1996). [CrossRef]
  15. K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, "Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films," Phys. Rev. Lett. 81, 3679-3682 (1998). [CrossRef]
  16. D. H. Reitze, H. Ahn, and M. C. Downer, "Optical properties of liquid carbon measured by femtosecond spectroscopy," Phys. Rev. B 45, 2677-2693 (1992). [CrossRef]
  17. S. Preuss and M. Stuke, "Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics," Appl. Phys. Lett. 67, 338-340 (1995). [CrossRef]
  18. H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, "Theory for laser-induced ultrafast phase transitions in carbon," Appl. Phys. A 69, S49-S53 (1999).
  19. Q. Wu, L. Yu, Y. Ma, Y. Liao, R. Fang, L. Zhang, X. Chen, and K. Wang, "Raman investigation of amorphous carbon in diamond film treated by laser," J. Appl. Phys. 93, 94-100 (2003). [CrossRef]
  20. G. A. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, "Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch," Appl. Phys. Lett. 39, 295-296 (1981). [CrossRef]
  21. Z. Chang, A. Rundquist, H. Wang, M.M. Murnane, and H. Kapteyn, "Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics," Phys. Rev. Lett. 79, 2967-2970 (1997). [CrossRef]
  22. C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, "Picosecond-milliångström lattice dynamics measured by ultrafast X-ray diffraction," Nature 398, 310-312 (1999). [CrossRef]
  23. K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, "Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses," Opt. Lett. 25, 408-410 (2000). [CrossRef]
  24. H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, and T. Sasaki, "Laser Irradiated Growth of Protein Crystal," Jpn. J. Appl. Phys. 42, L798-L800 (2003). [CrossRef]
  25. G. J. Lee, S. H. Song, Y. P. Lee, H. Cheong, C. S. Yoon, Y. D. Son, and J. Jang, "Arbitrary surface structuring of amorphous silicon films based on femtosecond-laser-induced crystallization," Appl. Phys. Lett. 89, 15190-7-3 (2006). [CrossRef]
  26. H. Ma, G. Guo, J. Yang, Y. Guo, and N. Ma, "Femtosecond laser irradiation-induced phase transformation on titanium dioxide crystal surface," Nucl. Instrum. Methods Phys. Res. B 264, 61-65 (2007). [CrossRef]
  27. K. Nakamura, Y. Sora, H. Y. Yoshikawa, Y. Hosokawa, R. Murai, H. Adachi, Y. Mori, T. Sasaki, and H. Masuhara, "Femtosecond laser-induced crystallization of protein in gel medium," Appl. Surf. Sci. 253, 6425-6429 (2007). [CrossRef]
  28. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, "Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass," Opt. Exp. 15, 5674-5686 (2007). [CrossRef]
  29. H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, "Microscopic analysis of the laser-induced femtosecond graphitization of diamond," Phys. Rev. B 60, R3701-R3704 (1999). [CrossRef]
  30. C. Z. Wang, K. M. Ho, M. D. Shirk, and P. A. Molian, "Laser-Induced Graphitization on a Diamond (111) Surface," Phys. Rev. Lett. 85, 4092-4095 (2000). [CrossRef] [PubMed]
  31. H. O. Jeschke, M. E. Garcia and K. H. Bennemann, "Theory for the Ultrafast Ablation of Graphite Films," Phys. Rev. Lett. 87, 015003-1-4 (2001). [CrossRef] [PubMed]
  32. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  33. A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Phys. Rev. B 61, 14095-14107 (2000). [CrossRef]
  34. F. Tuinstra and J. L. Koenig, " Raman Spectrum of Graphite," J. Chem. Phys. 53, 1126-1130 (1970). [CrossRef]
  35. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett. 20, 73-75 (1995). [CrossRef] [PubMed]
  36. G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, "Organizing Multiple Femtosecond Filaments in Air," Phys. Rev. Lett. 93, 035003-1-4 (2004). [CrossRef] [PubMed]
  37. C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," Nature 431, 538-541 (2004). [CrossRef] [PubMed]
  38. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007). [CrossRef] [PubMed]
  39. J. Henzie, M. H. Lee, and T. W. Odom, "Multiscale patterning of plasmonic metamaterials," Nature Nanotechnol. 2, 549-554 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited