OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 1 — Jan. 5, 2009
  • pp: 7–24

Dispersion encoded full range frequency domain optical coherence tomography

Bernd Hofer, Boris Považay, Boris Hermann, Angelika Unterhuber, Gerald Matz, and Wolfgang Drexler  »View Author Affiliations


Optics Express, Vol. 17, Issue 1, pp. 7-24 (2009)
http://dx.doi.org/10.1364/OE.17.000007


View Full Text Article

Enhanced HTML    Acrobat PDF (1232 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an iterative algorithm that exploits the dispersion mismatch between reference and sample arm in frequency-domain optical coherence tomography (FD-OCT) to effectively cancel complex conjugate mirror terms in individual A-scans and thereby generate full range tomograms. The resulting scheme, termed dispersion encoded full range (DEFR) OCT, allows distinguishing real structures from complex conjugate mirror artifacts. Even though DEFR-OCT has higher post-processing complexity than conventional FD-OCT, acquisition speed is not compromised since no additional A-scans need to be measured, thereby rendering this technique robust against phase fluctuations. The algorithm uses numerical dispersion compensation and exhibits similar resolution as standard processing. The residual leakage of mirror terms is further reduced by incorporating additional knowledge such as the power spectrum of the light source. The suppression ratio of mirror signals is more than 50 dB and thus comparable to complex FD-OCT techniques which use multiple A-scans.

© 2009 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3020) Image processing : Image reconstruction-restoration
(100.5070) Image processing : Phase retrieval
(110.4500) Imaging systems : Optical coherence tomography
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:
Imaging Systems

History
Original Manuscript: November 13, 2008
Revised Manuscript: December 17, 2008
Manuscript Accepted: December 18, 2008
Published: December 22, 2008

Virtual Issues
Vol. 4, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Bernd Hofer, Boris Považay, Boris Hermann, Angelika Unterhuber, Gerald Matz, and Wolfgang Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Express 17, 7-24 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-1-7


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-16-1415 [CrossRef]
  2. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve highspeed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003). http://ol.osa.org/abstract.cfm?URI=ol-28-22-2201 [CrossRef] [PubMed]
  3. P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and W. Gorczynska, "Complex spectral OCT in human eye imaging in vivo," Opt. Commun. 229, 79-84 (2004). http://dx.doi.org/doi:10.1016/j.optcom.2003.10.041 [CrossRef]
  4. P. Targowski, W. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, "Improved complex spectral domain OCT for in vivo eye imaging," Opt. Commun. 249, 357-362 (2005). http://dx.doi.org/doi:10.1016/j.optcom.2005.01.016 [CrossRef]
  5. J. Zhang, J. S. Nelson, and Z. P. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-2-147 [CrossRef] [PubMed]
  6. E. G¨otzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express 13, 583-594 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-583 [CrossRef] [PubMed]
  7. M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous quadrature low-coherence interferometry with 3×3 fiberoptic couplers," Opt. Lett. 28, 2162-2164 (2003). http://ol.osa.org/abstract.cfm?URI=ol-28-22-2162 [CrossRef] [PubMed]
  8. M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-3-957 [CrossRef] [PubMed]
  9. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography," Opt. Lett. 31, 2426-2428 (2006). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-16-2426 [CrossRef] [PubMed]
  10. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45, 1861-1865 (2006). http://ao.osa.org/abstract.cfm?URI=ao-45-8-1861 [CrossRef] [PubMed]
  11. R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Applied Physics Letters 90, 054103 (2007). http://link.aip.org/link/?APL/90/054103/1
  12. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453-3455 (2007). http://ol.osa.org/abstract.cfm?URI=ol-32-23-3453 [CrossRef] [PubMed]
  13. B. Baumann, M. Pircher, E. G¨otzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13 375-13 387 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13375 [CrossRef]
  14. Y. K. Tao, M. Zhao, and J. A. Izatt, "High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation," Opt. Lett. 32, 2918-2920 (2007). http://ol.osa.org/abstract.cfm?URI=ol-32-20-2918 [CrossRef] [PubMed]
  15. S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-?m spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-12-8406 [CrossRef] [PubMed]
  16. S. Yun, G. Tearney, J. de Boer, and B. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-20-4822 [CrossRef] [PubMed]
  17. A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064 005-6 (2005). http://link.aip.org/link/?JBO/10/064005/1 [CrossRef]
  18. A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-4-1487 [CrossRef] [PubMed]
  19. A. H. Bachmann, R. Michaely, T. Lasser, and R. A. Leitgeb, "Dual beam heterodyne Fourier domain optical coherence tomography," Opt. Express 15, 9254-9266 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-15-9254 [CrossRef] [PubMed]
  20. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett. 31, 362-364 (2006). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-3-362 [CrossRef] [PubMed]
  21. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2435 [CrossRef] [PubMed]
  22. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Autofocus algorithm for dispersion correction in optical coherence tomography," Appl. Opt. 42, 3038-3046 (2003). http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-16-3038 [CrossRef] [PubMed]
  23. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404 [CrossRef] [PubMed]
  24. K. E. O’Hara and M. Hacker, "Method to suppress artifacts in frequency-domain optical coherence tomograghy," US7330270 (2008).
  25. J. A. Izatt and M. A. Choma, Optical Coherence Tomography Technology and Applications (Springer, 2008), Vol. XXIX, chap. 2, "Theory of Optical Coherence Tomography", pp. 47-72. http://www.springer.com/medicine/radiology/book/978-3-540-77549-2?detailsPage=samplePages [CrossRef]
  26. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, "Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography," Opt. Express 9, 610-615 (2001). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-12-610 [CrossRef] [PubMed]
  27. M. Duarte, M. Davenport, M. Wakin, and R. Baraniuk, "Sparse Signal Detection from Incoherent Projections," in Proc. Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP)3, III305-308 (2006). http://dx.doi.org/doi:10.1109/ICASSP.2006.1660651
  28. B. Povazay, B. Hofer, B. Hermann, A. Unterhuber, J. E. Morgan, C. Glittenberg, S. Binder, and W. Drexler, "Minimum distance mapping using three-dimensional optical coherence tomography for glaucoma diagnosis," J. Biomed. Opt. 12, 041 204 (2007). http://link.aip.org/link/?JBO/12/041204/1 [CrossRef]
  29. E. J. Fern’andez, A. Unterhuber, B. Pova?zay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-13-6213 [CrossRef] [PubMed]
  30. R. K. Wang and Z. Ma, "A practical approach to eliminate autocorrelation artefacts for volumerate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006). http://www.iop.org/EJ/abstract/0031-9155/51/12/015/ [CrossRef] [PubMed]
  31. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-3-367 [CrossRef] [PubMed]
  32. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fourier-transform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000). http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-10-1795 [CrossRef]
  33. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). http://dx.doi.org/10.1117/1.1482379 [CrossRef] [PubMed]
  34. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183 [CrossRef] [PubMed]
  35. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Realtime fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 ?m," Opt. Express 13, 3931-3944 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-11-3931 [CrossRef] [PubMed]
  36. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2156 [CrossRef] [PubMed]
  37. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10 652-10 664 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-26-10652 [CrossRef] [PubMed]
  38. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007). http://link.aip.org/link/?JBO/12/041205/1 [CrossRef]
  39. W. Drexler, U. Morgner, F. X. K¨artner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-17-1221 [CrossRef]
  40. J. F. de Boer, C. E. Saxer, and J. S. Nelson, "Stable carrier generation and phase-resolved digital data processing in optical coherence tomography," Appl. Opt. 40, 5787-5790 (2001). http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-31-5787 [CrossRef]
  41. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media," Appl. Opt. 42, 204-217 (2003). http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-2-204 [CrossRef] [PubMed]
  42. A. R. Tumlinson, B. Hofer, A. M. Winkler, B. Pova?zay, W. Drexler, and J. K. Barton, "Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k-sampling," Appl. Opt. 47, 687-693 (2008). http://ao.osa.org/abstract.cfm?URI=ao-47-5-687 [CrossRef] [PubMed]
  43. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007); http://www.opticsexpress.org/abstract.cfm?URI=oe-15-10-6121 [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited