OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 7771–7783

Slow vector optical solitons in a cold five-level hyper V-type atomic system

Liu-Gang Si, Wen-Xing Yang, Ji-Bing Liu, Jin Li, and Xiaoxue Yang  »View Author Affiliations


Optics Express, Vol. 17, Issue 10, pp. 7771-7783 (2009)
http://dx.doi.org/10.1364/OE.17.007771


View Full Text Article

Enhanced HTML    Acrobat PDF (413 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new scheme of five-level hyper V-type atomic system is proposed with the aim of generating slow temporal vector optical solitons. Two transitions in the five-level atomic medium independently interact with the two orthogonally polarized components of a low intensity linear-polarized pulsed probe field, while two other transitions are driven by control laser fields. We demonstrate that various distortion-free slow temporal vector optical solitons, such as bright-bright, bright-dark, dark-bright and dark-dark vector solitons, can be evolved from the probe field. Besides, we also show that the modified Hubbard model that includes the Manakov system may be realized by adjusting the corresponding self- (cross-) phase modulation and dispersion effects of this system.

© 2009 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(260.7490) Physical optics : Zeeman effect

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 12, 2009
Revised Manuscript: April 17, 2009
Manuscript Accepted: April 17, 2009
Published: April 27, 2009

Citation
Liu-Gang Si, Wen-Xing Yang, Ji-Bing Liu, Jin Li, and Xiaoxue Yang, "Slow vector optical solitons in a cold five-level hyper V-type atomic system," Opt. Express 17, 7771-7783 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-7771


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 2001).
  2. B. A. Malomed, Soliton management in periodic systems (Springer, 2006).
  3. H. A. Haus and W. S. Wong, "Solitons in optical communications," Rev. Mod. Phys. 68, 423-444 (1996). [CrossRef]
  4. Y. Wu and L. Deng, "Ultraslow optical solitons in a cold four-state medium," Phys. Rev. Lett. 93, 143904 (2004). [CrossRef] [PubMed]
  5. Y. Wu and L. Deng, "Ultraslow bright and dark optical solitons in a cold three-state medium," Opt. Lett. 29, 2064-2066 (2004). [CrossRef] [PubMed]
  6. Y. Wu, "Two-color ultraslow optical solitons via four-wave mixing in cold-atom media," Phys. Rev. A 71, 053820 (2005). [CrossRef]
  7. X. Yang and Y. Wu, "Ultra-slow Bright and Dark Optical Solitons in Cold Media," Commun. Theor. Phys. 45, 335-342 (2006). [CrossRef]
  8. W.-X. Yang and R.-K. Lee, "Slow optical solitons via intersubband transitions in a semiconductor quantum well," Europhys. Lett. 83, 14002 (2008) [CrossRef]
  9. W.-X. Yang, J.-M. Hou, and R.-K. Lee, "Ultraslow bright and dark solitons in semiconductor quantum wells," Phys. Rev. A 77, 033838 (2008) [CrossRef]
  10. X.-T. Xie,W.-B. Li, and X. Yang, "Bright, dark, bistable bright, and vortex spatial-optical solitons in a cold threestate medium," J. Opt. Soc. Am. B 23, 1609-1614 (2006). [CrossRef]
  11. X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, "Transverse acoustic wave in molecular magnets via electromagnetically induced transparency," Phys. Rev. B 75, 184423 (2007). [CrossRef]
  12. J.-B. Liu, X.-Y. Lu, N. Liu, M. Wang, and T.-K. Liu, "Microwave solitons in molecular magnets via electromagnetically induced transparency," Phys. Lett. A 373, 413-417 (2008). [CrossRef]
  13. B. Wu, J. Liu, and Q. Niu, "Controlled Generation of Dark Solitons with Phase Imprinting," Phys. Rev. Lett. 88, 034101 (2002). [CrossRef] [PubMed]
  14. X.-J. Liu, H. Jing, and M.-L. Ge, "Solitons formed by dark-state polaritons in an electromagnetic induced transparency," Phys. Rev. A 70, 055802 (2004). [CrossRef]
  15. H. E. Nistazakis, D. J. Frantzeskakis, P. G. Kevrekidis, B. A. Malomed, and R. Carretero-Gonz’alez, "Bright-dark soliton complexes in spinor Bose-Einstein condensates," Phys. Rev. A 77, 033612 (2008). [CrossRef]
  16. L. Deng, M. G. Payne, G. Huang, and E. W. Hagley, "Formation and propagation of matched and coupled ultraslow optical soliton pairs in a four-level double-Λ system," Phys. Rev. E 72, 055601(R) (2005). [CrossRef]
  17. D. V. Skryabin, A. V. Yulin, and A. I. Maimistov, "Localized Polaritons and Second-Harmonic Generation in a Resonant Medium with Quadratic Nonlinearity," Phys. Rev. Lett. 96, 163904 (2006). [CrossRef] [PubMed]
  18. G. T. Adamashvili, C. Weber, and A. Knorr, "Optical nonlinear waves in semiconductor quantum dots: Solitons and breathers," Phys. Rev. A 75, 063808 (2007). [CrossRef]
  19. Y. Wu and R.  Côté, "Bistability and quantum fluctuations in coherent photoassociation of a Bose-Einstein condensate," Phys. Rev. A 65, 053603 (2002). [CrossRef]
  20. J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, "Optical bistability and multistability via atomic coherence in an N-type atomic medium," Phys. Rev. A 74, 035801 (2006). [CrossRef]
  21. Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, "Ultraviolet single-photons on demand and entanglement of photons with a large frequency difference," Phys. Rev. A 70, 063812 (2004). [CrossRef]
  22. Y. Wu and L. Deng, "Achieving multifrequency mode entanglement with ultraslow multiwave mixing," Opt. Lett. 29, 1144-1146 (2004). [CrossRef] [PubMed]
  23. X.-Y. Lü, J.-B. Liu, C.-L. Ding, and J.-H. Li, "Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms," Phys. Rev. A 78, 032305 (2008). [CrossRef]
  24. Y. Wu and X. Yang, "Highly efficient four-wave mixing in double-⊄ system in ultraslow propagation regime," Phys. Rev. A 70, 053818 (2004). [CrossRef]
  25. Y. Wu and X. Yang, "Four-wave mixing in molecular magnets via electromagnetically induced transparency," Phys. Rev. B 76, 054425 (2007). [CrossRef]
  26. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997). [CrossRef]
  27. S. E. Harris and L. V. Hau, "Nonlinear Optics at Low Light Levels," Phys. Rev. Lett. 82, 4611-4614 (1999). [CrossRef]
  28. Y. Wu and X. Yang, "Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis," Phys. Rev. A 71, 053806 (2005). [CrossRef]
  29. S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Observation of Polarization-Locked Vector Solitons in an Optical Fiber," Phys. Rev. Lett. 82, 3988-3991 (1999). [CrossRef]
  30. G. Huang, K. Jiang, M. G. Payne, and L. Deng, "Formation and propagation of coupled ultraslow optical soliton pairs in a cold three-state double-Λ system," Phys. Rev. E 73, 056606 (2006). [CrossRef]
  31. C. Hang and G. Huang, "Weak-light ultraslow vector solitons via electromagnetically induced transparency," Phys. Rev. A 77, 033830 (2008). [CrossRef]
  32. L.-G. Si, J.-B. Liu, X.-Y. Lü, and X. Yang, "Ultraslow temporal vector optical solitons in a cold five-state atomic medium under Raman excitation," J. Phys. B 41, 215504 (2008). [CrossRef]
  33. L.-G. Si, W.-X. Yang, and X. Yang, "Ultraslow temporal vector optical solitons in a cold four-level tripod atomic system," J. Opt. Soc. Am. B 26, 478-486 (2009). [CrossRef]
  34. D. V. Skryabin, F. Biancalana, D. M. Bird, and F. Benabid, "Effective Kerr Nonlinearity and Two-Color Solitons in Photonic Band-Gap Fibers Filled with a Raman Active Gas," Phys. Rev. Lett. 93, 143907 (2004). [CrossRef] [PubMed]
  35. D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, "Observation of High-Order Polarization-Locked Vector Solitons in a Fiber Laser," Phys. Rev. Lett. 101, 153904 (2008). [CrossRef] [PubMed]
  36. A. E. Korolev, V. N. Nazarov, D. A. Nolan, and C. M. Truesdale, "Experimental observation of orthogonally polarized time-delayed optical soliton trapping in birefringent fibers," Opt. Lett. 30, 132-134 (2005). [CrossRef] [PubMed]
  37. Y. Barad and Y. Silberberg, "Polarization Evolution and Polarization Instability of Solitons in a Birefringent Optical Fiber," Phys. Rev. Lett. 78, 3290-3293 (1997). [CrossRef]
  38. D. Rand, I. Glesk, C.-S. Brés, D. A. Nolan, X. Chen, J. Koh, J. W. Fleischer, K. Steiglitz, and P. R. Prucnal, "Observation of Temporal Vector Soliton Propagation and Collision in Birefringent Fiber," Phys. Rev. Lett. 98, 053902 (2007). [CrossRef] [PubMed]
  39. M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211-3214 (1994). [CrossRef] [PubMed]
  40. Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, "Observation of incoherently coupled photorefractive spatial soliton pairs," Opt. Lett. 21, 1436-1438 (1996). [CrossRef] [PubMed]
  41. J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, "Observation of Manakov spatial solitons in AlGaAs planar waveguides," Phys. Rev. Lett. 76, 3699-3702 (1996). [CrossRef] [PubMed]
  42. C. Anastassiou, J. W. Fleischer, T. Carmon, M. Segev, and K. Steiglitz, "Information transfer via cascaded collisions of vector solitons," Opt. Lett. 26, 1498-1500 (2001). [CrossRef]
  43. M. Delqué, T. Sylvestre, H. Maillotte, C. Cambournac, P. Kockaert, and M. Haelterman, "Experimental observation of the elliptically polarized fundamental vector soliton of isotropic Kerr media," Opt. Lett. 30, 3383-3385 (2005). [CrossRef]
  44. H. Schmidt and A. Imamǒglu, "Giant Kerr nonlinearities obtained by electromagnetically induced transparency," Opt. Lett. 21, 1936-1938 (1996). [CrossRef] [PubMed]
  45. M. D. Lukin and A. Imamǒglu, "Nonlinear optics and quantum entanglement of ultraslow single photons," Phys. Rev. Lett. 84, 1419-1422 (2000) [CrossRef] [PubMed]
  46. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999). [CrossRef]
  47. L. Deng, E. W. Hagley, M. Kozuma, and M. G. Payne, "Optical-wave group-velocity reduction without electromagnetically induced transparency," Phys. Rev. A 65, 051805(R) (2002). [CrossRef]
  48. L. Deng, M. Kozuma, E.W. Hagley, and M. G. Payne, "Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves," Phys. Rev. Lett. 88, 143902 (2002). [CrossRef] [PubMed]
  49. Y. Wu, L. Wen, and Y. Zhu, "Efficient hyper-Raman scattering in resonant coherent media," Opt. Lett. 28, 631-633 (2003). [CrossRef] [PubMed]
  50. S. Trillo, S. Wabnitz, E. M. Wright, and G. I. Stegeman, "Optical solitary waves induced by cross-phase modulation," Opt. Lett. 13, 871-873 (1988). [CrossRef] [PubMed]
  51. V. V. Afanasyev, Y. S. Kivshar, V. V. Konotop, and V. N. Serkin, "Dynamics of coupled dark and bright optical solitons," Opt. Lett. 14, 805-807 (1989). [CrossRef] [PubMed]
  52. J. Yang, "Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics," Phys. Rev. E 59, 2393-2405 2393 (1999). [CrossRef]
  53. Q. Park and H. J. Shin, "Systematic construction of multicomponent optical solitons," Phys. Rev. E 61, 3093-3106 (2000). [CrossRef]
  54. T. Kanna, M. Vijayajayanthi, and M. Lakshmanan, "Periodic energy switching of bright solitons in mixed coupled nonlinear Schrödinger equations with linear self-coupling and cross-coupling terms," Phys. Rev. A 76, 013808 (2007). [CrossRef]
  55. E. Yomba, "Generalized hyperbolic functions to find soliton-like solutions for a system of coupled nonlinear Schrödinger equations," Phys. Lett. A 372, 1612-1618 (2008). [CrossRef]
  56. T. Kanna, M. Lakshmanan, P. Tchofo Dinda, and N. Akhmediev, "Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrödinger equations," Phys. Rev. E 73, 026604 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited