OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 7831–7836

Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission

Michael Moewe, Linus C. Chuang, Shanna Crankshaw, Kar Wei Ng, and Connie Chang-Hasnain  »View Author Affiliations


Optics Express, Vol. 17, Issue 10, pp. 7831-7836 (2009)
http://dx.doi.org/10.1364/OE.17.007831


View Full Text Article

Enhanced HTML    Acrobat PDF (966 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

InxGa1-xAs wurtzite nanoneedles are grown without catalysts on silicon substrates with x ranging from zero to 0.15 using low-temperature metalorganic chemical vapor deposition. The nanoneedles assume a 6°-9° tapered shape, have sharp 2~5 nm tips, are 4 μm in length and 600 nm wide at the base. The micro-photoluminescence peaks exhibit redshifts corresponding to their increased indium incorporation. Core-shell InGaAs/GaAs layered quantum well structures are grown which exhibit quantum confinement of carriers, and emission below the silicon bandgap.

© 2009 OSA

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: January 6, 2009
Revised Manuscript: April 12, 2009
Manuscript Accepted: April 20, 2009
Published: April 28, 2009

Citation
Michael Moewe, Linus C. Chuang, Shanna Crankshaw, Kar Wei Ng, and Connie Chang-Hasnain, "Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission," Opt. Express 17, 7831-7836 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-7831


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Moewe, L. C. Chuang, V. G. Dubrovskii, and C. Chang-Hasnain, “Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates,” J. Appl. Phys. 104(4), 044313 (2008). [CrossRef]
  2. L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007). [CrossRef]
  3. M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93(2), 023116 (2008). [CrossRef]
  4. R. C. Smith, J. D. Carey, R. D. Forrest, and S. R. P. Silva, “Effect of aspect ratio and anode location on the field emission properties of a single tip based emitter,” J. Vac. Sci. Technol. B 23(2), 632–635 (2005). [CrossRef]
  5. Y. B. Tang, H. T. Cong, Z. M. Wang, and H.-M. Cheng, “Catalyst-seeded synthesis and field emission properties of flowerlike Si-doped AlN nanoneedle array,” Appl. Phys. Lett. 89(25), 253112 (2006). [CrossRef]
  6. J. Y. Huang, K. Kempa, S. H. Jo, S. Chen, and Z. F. Ren, “Giant field enhancement at carbon nanotube tips induced by multistage effect,” Appl. Phys. Lett. 87(5), 053110 (2005). [CrossRef]
  7. G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984). [CrossRef]
  8. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318(1-3), 131–136 (2000). [CrossRef]
  9. S. L. Chuang, Physics of Optoelectronic Devices, John Wiley & Sons, Inc., New York, NY, 1995.
  10. R. Banerjee, A. Bhattacharya, A. Genc, and B. M. Arora, “Structure of twins in GaAs nanowires grown by the vapour-liquid-solid process,” Philos. Mag. Lett. 86(12), 807–816 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited