OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 7837–7843

Polymer planar waveguide device using inverted channel structure with upper liquid crystal cladding

Y. Xu, M. A. Uddin, P. S. Chung, and H. P. Chan  »View Author Affiliations

Optics Express, Vol. 17, Issue 10, pp. 7837-7843 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (238 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a composite waveguide configuration based on an inverted polymer channel structure with upper nematic liquid crystal cladding. This configuration can achieve a more homogenous liquid crystal molecular alignment between the core and the liquid crystal material by minimizing the rubbing damage during preparation of the alignment layer. We demonstrated our idea with a variable optical attenuator which exhibited a 24 dB of attenuation range over a tuning peak voltage of 10 V at 1550 nm.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.3710) Materials : Liquid crystals
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.2090) Optical devices : Electro-optical devices
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: February 6, 2009
Revised Manuscript: March 30, 2009
Manuscript Accepted: April 22, 2009
Published: April 28, 2009

Y. Xu, M. A. Uddin, P. S. Chung, and H. P. Chan, "Polymer planar waveguide device using inverted channel structure with upper liquid crystal cladding," Opt. Express 17, 7837-7843 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007). [CrossRef] [PubMed]
  2. K. Maru and Y. Abe, “Low-loss, flat-passband and athermal arrayed-waveguide grating multi/demultiplexer,” Opt. Express 15(26), 18351–18356 (2007). [CrossRef] [PubMed]
  3. H. H. Keil, H. H. Yao, and C. Zawadzki, “2×2 digital optical switch realized by low cost polymer waveguide technology,” Electron. Lett. 32(16), 1470–1471 (1996). [CrossRef]
  4. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000). [CrossRef]
  5. A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica,” Opt. Express 14(13), 6055–6062 (2006). [CrossRef] [PubMed]
  6. Z. He, Y. Li, Y. Li, Y. Zhang, L. Liu, and L. Xu, “Low-loss channel waveguides and Y-splitter formed by ion-exchange in silica-on-silicon,” Opt. Express 16(5), 3172–3177 (2008). [CrossRef] [PubMed]
  7. W. Jin, K. S. Chiang, and Q. Liu, “Electro-optic long-period waveguide gratings in lithium niobate,” Opt. Express 16(25), 20409–20417 (2008). [CrossRef] [PubMed]
  8. C. G. Choi, “Fabrication of optical waveguides in thermosetting polymers using hot embossing,” J. Micromech. Microeng. 14(7), 945–949 (2004). [CrossRef]
  9. H. P. Chan, C. K. Chow, and A. K. Das, “A wide-angle X-junction polymeric thermooptic digital switch with low crosstalk,” IEEE Photon. Technol. Lett. 15(9), 1210–1212 (2003). [CrossRef]
  10. V. G. Chigrinov, “Liquid crystal devices for photonics applications,” Proc. SPIE 6781, 67811M1–12 (2007)
  11. A. Diaz, S. Kubo, D. H. Kwon, J. Park, D. Werner, T. Mallouk, and I. C. Khoo, “Nonlinear liquid crystal Na no-metamaterials” IEEE/LEOS Winter Topical Meeting Series, 2008, 94–95(2008)
  12. I. C. Khoo, Liquid Crystal (John Wiley & Sons, 2007), Chap.6.
  13. J. L. D. Bougrenet and D. B. D. La Tocnaye, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst. 31(2), 241–269 (2004). [CrossRef]
  14. J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13(4), 262–267 (1977). [CrossRef]
  15. A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006). [CrossRef]
  16. M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. 18(10), 1603–1610 (1982). [CrossRef]
  17. S. Muto, T. Nagata, K. Asai, H. Ashizawa, and K. Arii, “Optical stabilizer and directional coupler switch using polymer thin film waveguides with liquid crystal clad,” Jpn. J. Appl. Phys. 29(Part 1, No. 9), 1724–1726 (1990). [CrossRef]
  18. A. D’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008). [CrossRef] [PubMed]
  19. W. C. Chuang, J. S. Lin, K. Y. Lee, and W. Y. Lee, “Polymer waveguide switch using liquid crystal overlayer,” SPIE‘s International Symposium on Opto-Electrics and Micro-Photonics, 1998.
  20. R. Asquini and A. d’Alessandro, “BPM analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55μm,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 375, 243–251 (2002). [CrossRef]
  21. Q. Wang and G. Farrell, “Integrated liquid crystal switch for both TE and TM modes: proposal and design,” J. Opt. Soc. Am. A 24(10), 3303–3308 (2007). [CrossRef]
  22. J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells,” Opt. Express 12(6), 1011–1018 (2004). [CrossRef] [PubMed]
  23. H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98(12), 123517 (2005). [CrossRef]
  24. H. Onodera, I. Awai, and J. Ikenoue, “Refractive-index measurement of bulk materials: prism coupling method,” Appl. Opt. 22(8), 1194–1197 (1983). [CrossRef] [PubMed]
  25. M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28(17), 1612–1613 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited