OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 7844–7852

Gigabit radio-over-fiber link for converged baseband and millimeter-wave band signal transmission using cascaded injection-locked Fabry-Pérot laser diodes

Moon-Ki Hong, Yong-Yuk Won, and Sang-Kook Han  »View Author Affiliations


Optics Express, Vol. 17, Issue 10, pp. 7844-7852 (2009)
http://dx.doi.org/10.1364/OE.17.007844


View Full Text Article

Enhanced HTML    Acrobat PDF (572 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel scheme, for both baseband and millimeter-wave band gigabit data transmission in radio-over-fiber system, is proposed and experimentally demonstrated by using cascaded injection-locked Fabry-Pérot laser diodes. It was able to improve suppression ratio of carrier suppressed signal using the cascaded injection-locking. The suppression ratio improvement of the optical carrier suppressed signal of 20dB was verified. Applying this mechanism, 60-GHz millimeter-wave carrier of enhanced signal quality could be accomplished. Its peak power and phase noise were obtained as −40dBm and −103.5dBm/Hz respectively, which was suitable for 60-GHz data transmission. In addition, a successful bidirectional transmission of 1.25-Gbps wired and wireless data was achieved by adopting remodulation technique using a gain-saturated reflective semiconductor optical amplifier for uplink.

© 2009 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4080) Fiber optics and optical communications : Modulation
(140.3520) Lasers and laser optics : Lasers, injection-locked
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 2, 2009
Revised Manuscript: April 14, 2009
Manuscript Accepted: April 20, 2009
Published: April 28, 2009

Citation
Moon-Ki Hong, Yong-Yuk Won, and Sang-Kook Han, "Gigabit radio-over-fiber link for converged baseband and millimeter-wave band signal transmission using cascaded injection-locked Fabry-Pérot laser diodes," Opt. Express 17, 7844-7852 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-7844


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. J. Seeds, “Microwave Photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002). [CrossRef]
  2. C. H. Cox III, Analog Optical Links (Cambridge Univ. Press, Cambridge, U.K., 2004).
  3. H. Al-Raweshidy, and S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks (Artech House, Norwood, MA, 2002).
  4. W. S. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge Univ. Press, Cambridge, U.K., 2002).
  5. A. Vilcot, B. Cabon and J. Chazelas, Microwave Photonics from Components to Applications and Systems (Kluwer Academic publisher, Dordrecht, The Netherlands, 2003).
  6. M. Sauer, K. Kojucharow, H. Kaluzni, D. Sommer, W. Nowak, and A. Finger, “Radio-optical system design and transmission experiments for a mobile broadband communications system at 60 GHz,” Wirel. Pers. Commun. 14(2), 147–163 (2000). [CrossRef]
  7. H. Harada, K. Sato, and M. Fujise, “A radio-on-fiber based millimeter-wave road-vehicle communication system by a code division multiplexing radio transmission scheme,” IEEE Trans. Intell. Transp. Syst. 2(4), 165–179 (2001). [CrossRef]
  8. A. J. Cooper, “Fibre/radio for the provision of cordless/mobile telephony services in the access network,” Electron. Lett. 26(24), 2054–2056 (1990). [CrossRef]
  9. L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel technique for high-capacity 60GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997). [CrossRef]
  10. A. Stohr, K. Kitayama, and D. Jager, “Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector,” IEEE Trans. Microw. Theory Tech. 47(7), 1338–1341 (1999). [CrossRef]
  11. K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5(8), 949–951 (1993). [CrossRef]
  12. H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett. 31(21), 1848–1849 (1995). [CrossRef]
  13. G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997). [CrossRef]
  14. M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(1), 190–192 (2005). [CrossRef]
  15. D.-W. Lee, Y.-Y. Won, and S.-K. Han, ““Bidirectional gigabit millimeter-wave wavelength division multiplexed-radio over fiber link using a reflective semiconductor optical amplifier,” IEICE Trans. Commun,” E 91-B, 2418–2421 (2008).
  16. J. J. OReilly, “P. M. Lane, R. Heidemann and R. Hofstetter, “Optical generation of very narrow linewidth millimeter wave signals,” Electron. Lett. 28, 2309–2311 (1992).
  17. A. Martinez, V. Polo, and J. Marti, “Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network,” IEEE Trans. Microw. Theory Tech. 49(10), 2018–2024 (2001). [CrossRef]
  18. Z. Xu, X. Zhang, and J. Yu, “Frequency Upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks,” Opt. Express 15(25), 16737–16747 (2007). [CrossRef] [PubMed]
  19. M. Mohamed, X. Zhang, B. Hraimel, and K. Wu, “Frequency sixupler for millimeter-wave over fiber systems,” Opt. Express 16(14), 10141–10151 (2008). [CrossRef] [PubMed]
  20. J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006). [CrossRef]
  21. C.-T. Lin, W.-R. Peng, P.-C. Peng, J. Chen, C.-F. Peng, B.-S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18(23), 2481–2483 (2006). [CrossRef]
  22. G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. QE-20(10), 1208–1216 (1984). [CrossRef]
  23. A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, “Chromatic. dispersion limitations in coherent lightwave transmission systems,” J. Lightwave Technol. 6(5), 704–709 (1988). [CrossRef]
  24. L. Goldberg, A. M. Yurek, H. F. Taylor, and J. F. Weller, “35 GHz microwave signal generation with an injection-locked laser diode,” Electron. Lett. 21(18), 814–815 (1985). [CrossRef]
  25. L. Noel, D. Wake, D. G. Moodie, D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997). [CrossRef]
  26. R.-P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998). [CrossRef]
  27. M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wireless Compon. Lett. 11(3), 101–103 (2001). [CrossRef]
  28. M.-K. Hong, Y.-Y. Won, and S.-K. Han, “Gigabit optical access link for simultaneous wired and wireless signal transmission based on dual parallel injection-locked Fabry-Pérot laser diodes,” J. Lightwave Technol. 26(15), 2725–2731 (2008). [CrossRef]
  29. H.-C. Kwon, Y.-Y. Won, and S.-K. Han, “Bidirectional SCM transmission using a noise suppressed Fabry-Perot laser diode and a reflective semiconductor optical amplifier in WDM/SCM-PON link,” IEEE Photon. Technol. Lett. 19(11), 858–860 (2007). [CrossRef]
  30. J.-M. Kang and S.-K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(3), 502–504 (2006). [CrossRef]
  31. S. Kasapi, S. Lathi, and Y. Yamamoto, “Amplitude-squeezed, frequency-modulated, tunable, diode-laser-based source for sub-shot-noise FM spectroscopy,” Opt. Lett. 22(7), 478–480 (1997). [CrossRef] [PubMed]
  32. J. J. O’Reilly, P. M. Lane, and M. H. Capstick, “Optical generation and delivery of modulated mm-waves for mobile communications,” in Analogue Optical Fibre Communications (Inst. of Electrical Engineers, London, U.K. 1995), pp 229–249.
  33. J.-M. Kang, Y.-Y. Won, S.-H. Lee, and S.-K. Han, “Modulation characteristics of RSOA in hybrid WDM/SCM-PON optical link,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2006), paper JThB68. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2006-JThB68
  34. J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-on-fiber systems,” IEEE Trans. Microw. Theory Tech. 54(2), 959–966 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited