OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 7853–7861

Generation of Attosecond X-ray and gamma-ray via Compton backscattering

Sang-Young Chung, Moohyun Yoon, and Dong Eon Kim  »View Author Affiliations


Optics Express, Vol. 17, Issue 10, pp. 7853-7861 (2009)
http://dx.doi.org/10.1364/OE.17.007853


View Full Text Article

Enhanced HTML    Acrobat PDF (445 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: The generation of an isolated attosecond gamma-ray pulse utilizing Compton backscattering of a relativistic electron bunch has been investigated. The energy of the electron bunch is modulated while the electron bunch interacts with a co-propagating few-cycle CEP (carrier envelope phase)-locked laser in a single-period wiggler. The energy-modulated electron bunch interacts with a counter-propagating driver laser, producing Compton back-scattered radiation. The energy modulation of the electron bunch is duplicated to the temporal modulation of the photon energy of Compton back-scattered radiation. The spectral filtering using a crystal spectrometer allows one to obtain an isolated attosecond gamma-ray.

© 2009 OSA

OCIS Codes
(290.1350) Scattering : Backscattering
(320.5550) Ultrafast optics : Pulses
(260.7120) Physical optics : Ultrafast phenomena

ToC Category:
Ultrafast Optics

History
Original Manuscript: December 10, 2008
Revised Manuscript: March 18, 2009
Manuscript Accepted: April 23, 2009
Published: April 28, 2009

Citation
Sang-Young Chung, Moohyun Yoon, and Dong Eon Kim, "Generation of Attosecond X-ray and gamma-ray via Compton backscattering," Opt. Express 17, 7853-7861 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-7853


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006). [CrossRef] [PubMed]
  2. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427(6977), 817–821 (2004). [CrossRef] [PubMed]
  3. M. Uiberacker, T. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H. G. Muller, M. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446(7136), 627–632 (2007). [CrossRef] [PubMed]
  4. E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305(5688), 1267–1269 (2004). [CrossRef] [PubMed]
  5. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002). [CrossRef] [PubMed]
  6. G. Farkas and C. Toth, “Proposal for attosecond light pulse generation using laser induced multiple-harmonic conversion processes in rare gases,” Phys. Lett. A 168(5-6), 447–450 (1992). [CrossRef]
  7. A. A. Zholents and W. M. Fawley, “Proposal for intense attosecond radiation from an x-ray free-electron laser,” Phys. Rev. Lett. 92(22), 224801 (2004). [CrossRef] [PubMed]
  8. A. A. Zholents and G. Penn, “Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser,” Phys. Rev. ST Accel. Beams 8(5), 050704 (2005). [CrossRef]
  9. P. Emma, K. Bane, M. Cornacchia, Z. Huang, H. Schlarb, G. Stupakov, and D. Walz, “Femtosecond and subfemtosecond x-ray pulses from a self-amplified spontaneous-emission-based free-electron laser,” Phys. Rev. Lett. 92(7), 074801 (2004). [CrossRef] [PubMed]
  10. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “A new technique to generate 100 GW-level attosecond X-ray pulses from the X-ray SASE FELs,” Opt. Commun. 239(1-3), 161–172 (2004). [CrossRef]
  11. P. Lan, P. Lu, W. Cao, and X. Wang, “Attosecond and zeptosecond x-ray pulses via nonlinear Thomson backscattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6 Pt 2), 066501 (2005). [CrossRef]
  12. A. E. Kaplan and P. L. Shkolnikov, “Lasetron: a proposed source of powerful nuclear-time-scale electromagnetic bursts,” Phys. Rev. Lett. 88(7), 074801 (2002). [CrossRef] [PubMed]
  13. F. V. Hartemann, W. J. Brown, D. J. Gibson, S. G. Anderson, A. M. Tremaine, P. T. Springer, A. J. Wootton, E. P. Hartouni, and C. P. J. Barty, “High-energy scaling of Compton scattering light sources,” Phys. Rev. ST Accel. Beams 8(10), 100702 (2005). [CrossRef]
  14. M. S. Dewey, E. G. Kessler, G. L. Greene, R. D. Deslattes, H. Borner, and J. Jolie, “Fundamental physics using ultrahigh resolution gamma spectroscopy,” Nucl. Instrum. Methods Phys. Res. A 284(1), 151–155 (1989). [CrossRef]
  15. G. L. Borchert, W. Scheck, and O. W. B. Schult, “Curved crystal spectrometer for precise energy measurements of gamma rays from 30 to 1500 keV,” Nucl. Instrum. Methods 124(1), 107–117 (1975). [CrossRef]
  16. G. L. Borchert, J. Bojowald, A. Ercan, H. Labus, Th. Rose, and O. W. B. Schult, “Curved crystal spectrometer for high-resolution in-beam spectroscopy of x-rays and low-energy gamma rays,” Nucl. Instrum. Methods Phys. Res. A 245(2-3), 393–401 (1986). [CrossRef]
  17. E. G. Kessler, M. S. Dewey, R. D. Deslattes, A. Henins, H. G. Börner, M. Jentsche, and H. Lehmann, “The GAMS4 flat crystal facility,” Nucl. Instrum. Methods Phys. Res. A 457(1-2), 187–202 (2001). [CrossRef]
  18. A. Yariv, Optical Electronics 4th ed. (Holt, Rinehart and Winston Inc., Philadelphia, 1991) pp. 47–48.
  19. K. Lee, Y. H. Cha, M. S. Shin, B. H. Kim, and D. Kim, “Temporal and spatial characterization of harmonics structures of relativistic nonlinear Thomson scattering,” Opt. Express 11, 309–316 (2003). [CrossRef] [PubMed]
  20. K. Lee, Y. H. Cha, M. S. Shin, B. H. Kim, and D. Kim, “Relativistic nonlinear Thomson scattering as attosecond x-ray source,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2 Pt 2), 026502 (2003). [CrossRef] [PubMed]
  21. K. Lee, B. H. Kim, and D. Kim, “Coherent radiation of relativistic nonlinear Thomson scattering,” Phys. Plasmas 12(4), 043107 (2005). [CrossRef]
  22. W. J. Brown and F. V. Hartemann, “Three-dimensional time and frequency-domain theory of femtosecond x-ray pulse generation through Thomson scattering,” Phys. Rev. ST Accel. Beams 7(6), 060703 (2004). [CrossRef]
  23. K. J. Weeks, V. N. Litvinenko, and J. M. J. Madey, “The Compton backscattering process and radiotherapy,” Med. Phys. 24(3), 417–423 (1997). [CrossRef] [PubMed]
  24. C. A. Brau, Free-Electron Lasers (Academic Press Inc., New York, 1990) pp. 64-85.
  25. A 5 ns, 1064 nm pulsed laser of 1 J at 5 kHz is under development at Institute of Laser Engineering, Osaka University, Japan, presented in Workshop on Advanced Technology of lasers for understanding of plasma physics, KAIST, Daejon, Republic of Korea, Feb. 13–14, 2009.
  26. A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. Macphee, D. Weinstein, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Düsterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, E. Bong, P. Emma, P. Krejcik, J. Arthur, S. Brennan, K. J. Gaffney, A. M. Lindenberg, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94(11), 114801 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited