OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 7862–7872

Infrared cloud imaging in support of Earth-space optical communication

Paul W. Nugent, Joseph A. Shaw, and Sabino Piazzolla  »View Author Affiliations


Optics Express, Vol. 17, Issue 10, pp. 7862-7872 (2009)
http://dx.doi.org/10.1364/OE.17.007862


View Full Text Article

Enhanced HTML    Acrobat PDF (259 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The increasing need for high data return from near-Earth and deep-space missions is driving a demand for the establishment of Earth-space optical communication links. These links will require a nearly obstruction-free path to the communication platform, so there is a need to measure spatial and temporal statistics of clouds at potential ground-station sites. A technique is described that uses a ground-based thermal infrared imager to provide continuous day-night cloud detection and classification according to the cloud optical depth and potential communication channel attenuation. The benefit of retrieving cloud optical depth and corresponding attenuation is illustrated through measurements that identify cloudy times when optical communication may still be possible through thin clouds.

© 2009 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(110.3080) Imaging systems : Infrared imaging
(010.1615) Atmospheric and oceanic optics : Clouds
(010.5630) Atmospheric and oceanic optics : Radiometry
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: September 29, 2008
Revised Manuscript: April 15, 2009
Manuscript Accepted: April 27, 2009
Published: April 28, 2009

Citation
Paul W. Nugent, Joseph A. Shaw, and Sabino Piazzolla, "Infrared cloud imaging in support of Earth-space optical communication," Opt. Express 17, 7862-7872 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-7862


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Piazzolla, S. Slobin, and P. E. Amini, “Cloud coverage diversity statistics for optical communication in the southwestern United States,” JPL Publication 00–13 (2000).
  2. M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. García-Talavera, A. Alonso, S. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antenn. Propag. 53(2), 842–850 (2005). [CrossRef]
  3. T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai, “Overview of the inter-orbit and orbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE 6457, 645702 (2007). [CrossRef]
  4. F. Khatri, D. M. Boroson, D. V. Murphy, and J. Sharma, “Link analysis of Mars-Earth optical communications system,” Proc. SPIE 5338, 143–150 (2004). [CrossRef]
  5. J. A. Shaw, P. Nugent, N. J. Pust, B. Thurairajah, and K. Mizutani, “Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera,” Opt. Express 13(15), 5807–5817 (2005), http://oe.osa.org/abstract.cfm?URI=oe-13-15-5807 . [CrossRef] [PubMed]
  6. B. Thurairajah and J. A. Shaw, “Cloud statistics measured with the infrared cloud imager (ICI),” IEEE Trans. Geosci. Remote Sens. 43(9), 2000–2007 (2005). [CrossRef]
  7. P. W. Nugent, “Wide-Angle Infrared Cloud Imager for Cloud Cover Statistics,” Masters Thesis, Electrical Engineering (Montana State University, 2008), http://etd.lib.montana.edu/etd/2008/nugent/NugentP0508.pdf .
  8. J. H. Churnside and K. Shaik, “Atmospheric propagation issues relevant to optical communications,” NOAA Technical Memorandum ERL WPL-159 (Jan. 1989).
  9. G. L. Stephens, D. G. Vane, R. J. Boain, G. G. Mace, K. Sassen, Z. Wang, A. J. Illingworth, E. J. O’Connor, W. B. Rossow, S. L. Durden, S. D. Miller, R. T. Austin, A. Benedetti, and C. Mitrescu, and theCloudSat Science Team, “The CloudSat mission and the A-Train,”, Bull. Am. Met. Soc. 83, 1771–1790 (2002). [CrossRef]
  10. G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999). [CrossRef]
  11. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0-120km).” Tech Report, Air Force Geophysics Laboratory Environmental Research Papers (1986).
  12. J. A. Shaw and L. Fedor, “Improved calibration of infrared radiometers for cloud-temperature remote sensing,” Opt. Eng. 32(5), 1002–1010 (1993). [CrossRef]
  13. E. Kassianov, C. N. Long, and M. Ovtchinnikov, “Cloud sky cover versus cloud fraction: whole-sky simulations and observations,” J. Appl. Meteorol. 44(1), 86–98 (2005). [CrossRef]
  14. T. Inoue, “A cloud type classification with NOAA 7 split-window measurements,” J. Geophys. Res. 92(D4), 3991–4000 (1987). [CrossRef]
  15. C. H. Reitan, “Surface dew point and water vapor aloft,” J. Appl. Meteorol. 2(6), 776–779 (1963). [CrossRef]
  16. C. Tomasi, “Determination of the total precipitable water vapor by varying the intercept in Reitan’s relationship,” J. Appl. Meteorol. 20(9), 1058–1069 (1981). [CrossRef]
  17. K. Sassen, and G. G. Mace, “Ground-Based Remote Sensing of Cirrus Clouds,” in Cirrus, D. K. Lynch, K. Sassen, D. O’C. Starr, and G. Stephens, eds (Oxford, New York, NY, 2002), pp 168–209.
  18. J. A. Reagan, X. Wang, and M. T. Osborn, “Spaceborne lidar calibration from cirrus and molecular backscatter returns,” IEEE Trans. Geosci. Rem. Sens. 40(10), 2285–2290 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited