OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 7873–7892

High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy

Timothy R. Hillman, Thomas Gutzler, Sergey A. Alexandrov, and David D. Sampson  »View Author Affiliations

Optics Express, Vol. 17, Issue 10, pp. 7873-7892 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1642 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We utilize synthetic-aperture Fourier holographic microscopy to resolve micrometer-scale microstructure over millimeter-scale fields of view. Multiple holograms are recorded, each registering a different, limited region of the sample object’s Fourier spectrum. They are “stitched together” to generate the synthetic aperture. A low-numerical-aperture (NA) objective lens provides the wide field of view, and the additional advantages of a long working distance, no immersion fluids, and an inexpensive, simple optical system. Following the first theoretical treatment of the technique, we present images of a microchip target derived from an annular synthetic aperture (NA = 0.61) whose area is 15 times that due to a single hologram (NA = 0.13); they exhibit a corresponding qualitative improvement. We demonstrate that a high-quality reconstruction may be obtained from a limited sub-region of Fourier space, if the object’s structural information is concentrated there.

© 2009 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(090.0090) Holography : Holography
(090.1000) Holography : Aberration compensation
(170.0180) Medical optics and biotechnology : Microscopy
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: February 9, 2009
Revised Manuscript: April 15, 2009
Manuscript Accepted: April 23, 2009
Published: April 28, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Timothy R. Hillman, Thomas Gutzler, Sergey A. Alexandrov, and David D. Sampson, "High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy," Opt. Express 17, 7873-7892 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97,168102 (2006). [CrossRef] [PubMed]
  2. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, "Digital Fourier holography enables wide-field, superresolved, microscopic characterization," in ‘Optics in 2007’, Opt. Photonics News 18, 29 (Dec. 2007). [CrossRef]
  3. S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, "Spatially resolved Fourier holographic light scattering angular spectroscopy," Opt. Lett. 30, 3305-3307 (2005). [CrossRef]
  4. T. R. Hillman, S. A. Alexandrov, T. Gutzler, and D. D. Sampson, "Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy," Opt. Express 14, 11088-11102 (2006), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-23-11088. [CrossRef] [PubMed]
  5. S. A. Alexandrov and D. D. Sampson, "Spatial information transmission beyond a systems diffraction limit using optical spectral encoding of the spatial frequency," J. Opt. A - Pure Appl. Opt. 10, 025304 (2008). [CrossRef]
  6. M. Ryle and A. Hewish, "The synthesis of large radio telescopes," Mon. Not. R. Astron. Soc. 120, 220-230 (1960).
  7. D. Gabor, "A new microscopic principle," Nature (London) 161, 777-778 (1948). [CrossRef]
  8. J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967). [CrossRef]
  9. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, Berlin, 2005).
  10. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, "Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy," Opt. Express 13,9361-9373 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-23-9361. [CrossRef] [PubMed]
  11. C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, "High-resolution quantitative phasecontrast microscopy by digital holography," Opt. Express 13, 8693-8698 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-8693. [CrossRef] [PubMed]
  12. M. Sebesta and M. Gustafsson, "Object characterization with refractometric digital Fourier holography," Opt. Lett. 30, 471-473 (2005). [CrossRef] [PubMed]
  13. J. H. Massig, "Digital off-axis holography with a synthetic aperture," Opt. Lett. 27, 2179-2181 (2002). [CrossRef]
  14. L. Martınez-Leon and B. Javidi, "Synthetic aperture single-exposure on-axis digital holography," Opt. Express 16,161-169 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-1-161. [CrossRef] [PubMed]
  15. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, "High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning," Appl. Opt. 47, 5654-5659 (2008). [CrossRef] [PubMed]
  16. F. Le Clerc, M. Gross, and L. Collot, "Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography," Opt. Lett. 26, 1550-1552 (2001). [CrossRef]
  17. R. Binet, J. Colineau, and J. C. Lehureau, "Short-range synthetic aperture imaging at 633 nm by digital holography," Appl. Opt. 41, 4775-4782 (2002). [CrossRef] [PubMed]
  18. J. R. Price, P. R. Bingham, and C. E. Thomas, Jr., "Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain," Appl. Opt. 46, 827-833 (2007). [CrossRef] [PubMed]
  19. C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, "Super-resolution digital holographic imaging method," Appl. Phys. Lett. 81, 3143-3145 (2002). [CrossRef]
  20. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, "Super-resolution in digital holography by a two-dimensional dynamic phase grating," Opt. Express 16,17107-17118 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-21-17107. [CrossRef] [PubMed]
  21. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, "Single-step superresolution by interferometric imaging," Opt. Express 12, 2589-2596 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2589. [CrossRef] [PubMed]
  22. C. Yuan, H. Zhai, and H. Liu, "Angular multiplexing in pulsed digital holography for aperture synthesis," Opt. Lett. 33, 2356-2358 (2008). [CrossRef] [PubMed]
  23. V. Mico, Z. Zalevsky, P. Garcıa-Martınez, and J. Garcıa, "Synthetic aperture superresolution with multiple offaxis holograms," J. Opt. Soc. Am. A 23, 3162-3170 (2006). [CrossRef]
  24. V. Mico, Z. Zalevsky, and J. Garcıa, "Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution," Opt. Commun. 281, 4273-4281 (2008). [CrossRef]
  25. V. Mico, O. Limon, A. Gur, Z. Zalevsky, and J. Garcıa, "Transverse resolution improvement using rotatinggrating time-multiplexing approach," J. Opt. Soc. Am. A 25, 1115-1129 (2008). [CrossRef]
  26. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, "Imaging interferometric microscopy - approaching the linear systems limits of optical resolution," Opt. Express 15, 6651-6663 (2007), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-15-11-6651. [CrossRef] [PubMed]
  27. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, "Imaging interferometric microscopy," J. Opt. Soc. Am. A 25, 811-822 (2008). [CrossRef]
  28. T. Turpin, L. Gesell, J. Lapides, and C. Price, "Theory of the synthetic aperture microscope," Proc. SPIE 2566, 230-240 (1995). [CrossRef]
  29. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, UK, 1999, 7th ed.).
  30. V. Lauer, "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope," J. Microsc. 205, 165-176 (2002). [CrossRef] [PubMed]
  31. F. Charriere, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, "Cell refractive index tomography by digital holographic microscopy, " Opt. Lett. 31, 178-180 (2006). [CrossRef] [PubMed]
  32. B. Simon, M. Debailleul, V. Georges, V. Lauer, and O. Haeberl’e, "Tomographic diffractive microscopy of transparent samples," Eur. Phys. J. Appl. Phys. 44, 29-35 (2008). [CrossRef]
  33. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, "Tomographic phase microscopy," Nat. Methods 4, 717-719 (2007). [CrossRef] [PubMed]
  34. W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Extended depth of focus in tomographic phase microscopy using a propagation algorithm," Opt. Lett. 33, 171-173 (2008). [CrossRef] [PubMed]
  35. S. S. Kou and C. J. R. Sheppard, "Image formation in holographic tomography," Opt. Lett. 33, 2362-2364 (2008). [CrossRef] [PubMed]
  36. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, Englewood, Colorado, 2005, 3rd ed.).
  37. H. H. Arsenault and G. April, "Fourier holography," in Handbook of Optical Holography, H. J. Caulfield, ed. (Academic Press, New York, 1979), pp. 165-180.
  38. S. T. Thurman and J. R. Fienup, "Phase-error correction in digital holography," J. Opt. Soc. Am. A 25, 983-994 (2008). [CrossRef]
  39. M. King, "Matlab m-files for multidimensional nonlinear conjugate gradient method" (2005), http://users.ictp.it/∼mpking/cg.html, accessed 12 December 2008.
  40. S. S. Kou and C. J. R. Sheppard, "Imaging in digital holographic microscopy," Opt. Express 15,13640-13648 (2007), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-15-21-13640. [CrossRef] [PubMed]
  41. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, Englewood, Colorado, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (6264 KB)     
» Media 2: MOV (8382 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited