OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 7893–7900

Low-threshold two-photon pumped ZnO nanowire lasers

Chunfeng Zhang, Fan Zhang, Tian Xia, Nitin Kumar, Jong-in Hahm, Jin Liu, Zhong Lin Wang, and Jian Xu  »View Author Affiliations

Optics Express, Vol. 17, Issue 10, pp. 7893-7900 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (305 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report in this communication the two-photon absorption (TPA)-induced room-temperature lasing performance of ZnO nanowires. Under femtosecond pulse-excitation at λ = 700 nm in the infrared regime, a remarkably low threshold of 160μJ/cm2 was observed for the TPA-induced lasing action, which is of the same order of magnitude as that measured for the linear lasing process. Time-resolved photoluminescence characterization of two-photon pumped ZnO nanowires reveals the presence of a fast decay (3–4 ps) in the stimulated emission as compared to the slow decay (50–70 ps) for the spontaneous emission. The TPA process in ZnO nanowires was characterized with the nonlinear transmission measurement, which uncovers an enhanced TPA coefficient, about 14.7 times larger than that of bulk ZnO samples. The observed TPA enhancement in ZnO nanowires accounts for the low threshold lasing behavior, and has been attributed to the intensified optical field confined within the nanowire waveguides.

© 2009 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 3, 2009
Revised Manuscript: April 22, 2009
Manuscript Accepted: April 22, 2009
Published: April 28, 2009

Chunfeng Zhang, Fan Zhang, Tian Xia, Nitin Kumar, Jong-in Hahm, Jin Liu, Zhong Lin Wang, and Jian Xu, "Low-threshold two-photon pumped ZnO nanowire lasers," Opt. Express 17, 7893-7900 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001). [CrossRef] [PubMed]
  2. C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, "Metal Oxide nanocrystals for gas sensing," Sens. Actuators B 109, 2-6 (2005). [CrossRef]
  3. D. Sirdhar, J. N. Xie, J. K. Abraham, and V. K. Varadan, "Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe," Proc. SPIE 6528, 6528L (2007).
  4. Y. F. Zhang and R. E. Russo, "Quantum efficiency of ZnO nanowire nanolasers," Appl. Phys. Lett. 87, 043106-043108 (2005). [CrossRef]
  5. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, "High temperature excitonic stimulated emission from ZnO epitaxial layers," Appl. Phys. Lett. 73, 1038-1040 (1998) [CrossRef]
  6. H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, R. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112-181114 (2007). [CrossRef]
  7. C. F. Zhang, Z. W. Dong, G. J. You, S. X. Qian, and H. Deng, "Multiphoton route to ZnO nanowire lasers," Opt. Lett. 31, 3345-3347 (2006). [CrossRef] [PubMed]
  8. C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, "Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires," Appl. Phys. Lett. 89, 042117-042119 (2006). [CrossRef]
  9. E. V. Chelnokov, N. Bityurin, I. Ozerov, and W. Marine, "Two-photon pumped random laser in nanocrystalline ZnO," Appl. Phys. Lett. 89, 171119-171121 (2006). [CrossRef]
  10. Q1. E. L. Portnoi, G. B. Venus, A. A. Khazan, I. M. Gadjiev, A. Y. Shmarcev, J. Frahm, and D. Kuhl, "Superhigh-power picosecond optical pulses from Q-switched diode laser," IEEE J. Sel. Top. Quant. Electron. 3, 256-260 (1997). [CrossRef]
  11. S. Vainshtein, J. Kostamovaara, M. Sverdlov, L. Shestak, and V. Tretyakov, "Laser diode structure for the generation of high-power picosecond optical pulses," Appl. Phys. Lett. 80, 4483-4485 (2002). [CrossRef]
  12. N. Kumar, A. Dorfman, and J. Hahm, "Fabrication of optically enhanced ZnO nanorods and microrods using novel biocatalysts," J. Nanosci. Nanotech. 5, 1-4 (2005). [CrossRef]
  13. C. Rullière, Femtosecond Laser Pulses—Principles and Experiments (Springer-Verlag, Berlin, 1998).
  14. G. P. Banfi, V. Degiorgio, D. Fortusini, and M. Bellini, "Measurement of the two-photon absorption coefficient of semiconductor nanocrystals by using tunable femtosecond pulses," Opt. Lett. 21, 1490-1492 (1996). [CrossRef] [PubMed]
  15. J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, "Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers," Nano. Lett. 4, 197-204 (2004). [CrossRef]
  16. W. M. Kwok, A. B. Djurisic, Y. H. Leung, W. K. Chan, D. L. Philips, H. Y. Chen, C. L. Wu, S. Gwo, and M. H. Xie, "Study of excitonic emission in highly faceted ZnO rods," Chem. Phys. Lett. 412, 141-144 (2005). [CrossRef]
  17. J. Bolger, A. K. Kar, B. S. Wherrett, R. DeSalvo, and D. J. Hagan, "Nondegenerate two-photon absorption spectra of ZnSe, ZnS, and ZnO," Opt. Commun. 97, 203-209 (1993). [CrossRef]
  18. Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, "Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal," J. Phys. Condens. Matter 19, 216202-216208 (2007). [CrossRef]
  19. X. J. Zhang, W. Ji, and S. H. Tang, "Determinatin of optical nonlinearities and carrier lifetime in ZnO," J. Opt. Soc. Am. B 14, 1951-1955 (1997). [CrossRef]
  20. J. He, Y. L. Qu, H. P. Li, J. Mi, and W. Ji, "Three-photon absorption in ZnO and ZnS crystals," Opt. Express 13, 9235-9247 (2005). [CrossRef] [PubMed]
  21. X. H. Yang, J. M. Hays, W. Shan, and J. J. Song, "Two-photon pumped blue lasing in bulk ZnSe and ZnSSe," Appl. Phys. Lett. 62, 1071-1073 (1993). [CrossRef]
  22. W. Wuenstel and C. Klingshirn, "Tunable laser-emission from wurtzite-type II-VI compounds," Opt. Commun. 32, 269-273 (1980). [CrossRef]
  23. L. W. Tutt and T. F. Boggess, "A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials," Prog. Quantum Electron. 17, 299-338 (1993). [CrossRef]
  24. J.C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  25. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, and D. N. Christodoulides, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express,  14, 9377-9384 (2006). [CrossRef] [PubMed]
  26. A. V. Maslova, M. I. Bakunov, and C. Z. Ning, "Distribution of optical emission between guided modes and free space in a semiconductor nanowire," J. Appl. Phys. 99, 024314-024323 (2006). [CrossRef]
  27. H. Yoshikawa and S. Adachi, "Optical constants of ZnO," Jpn. J. Appl. Phys. 36, 6237-6243 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited