OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 7916–7921

Ghost imaging through turbulent atmosphere

Jing Cheng  »View Author Affiliations


Optics Express, Vol. 17, Issue 10, pp. 7916-7921 (2009)
http://dx.doi.org/10.1364/OE.17.007916


View Full Text Article

Enhanced HTML    Acrobat PDF (117 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ghost imaging through turbulent atmospheres are theoretically studied. Based on the extended Huygens-Fresnel integral, we obtain an analytical imaging formula. The ghost image can be viewed as the convolution of the original object and a point-spread function (PSF). The imaging quality is determined by the size of the PSF. Increasing the turbulence strength and propagation distance, or decreasing the source size, will increase the size of the PSF, and lead to the degradation of the imaging quality.

© 2009 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(030.1640) Coherence and statistical optics : Coherence
(110.2990) Imaging systems : Image formation theory

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 11, 2009
Revised Manuscript: April 16, 2009
Manuscript Accepted: April 23, 2009
Published: April 28, 2009

Citation
Jing Cheng, "Ghost imaging through turbulent atmosphere," Opt. Express 17, 7916-7921 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-7916


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri and L.A. Lugiato, "Coherent imaging with pseudo-thermal incoherent light," J. Mod. Opt. 53, 739-760 (2006), and references therein. [CrossRef]
  2. D.V. Strekalov, A.V. Sergienko, D.N. Klyshko and Y.H. Shih, "Observation of Two-Photon Ghost Interference and Diffraction," Phys. Rev. Lett. 74, 3600-3603 (1995). [CrossRef] [PubMed]
  3. T. B. Pittman, Y. H. Shih, D. V. Strekalov and A. V. Sergienko, "Optical imaging by meansof two-photon quantum entanglement," Phys. Rev. A 52, 3429-3432 (1995). [CrossRef]
  4. J. Cheng and S. Han, "Incoherent Coincidence Imaging and Its Applicability in X-ray Diffraction," Phys. Rev. Lett. 92, 093903:1-4 (2004). [CrossRef]
  5. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, "Ghost Imaging with Thermal Light: Comparing Entanglement and Classical Correlation," Phys. Rev. Lett. 93, 093602:1-4 (2004). [CrossRef]
  6. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, "Two-Photon Imaging with Thermal Light," Phys. Rev. Lett. 94, 063601:1-4 (2005). [CrossRef]
  7. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light," Phys. Rev. Lett. 94, 183602:1-4 (2005). [CrossRef]
  8. D. Z. Cao, J. Xiong, and K. G. Wang, "Geometrical optics in correlated imaging systems," Phys. Rev. A 71, 013801:1-5 (2005). [CrossRef]
  9. D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, "Correlated two-photon imaging with true thermal light," Opt. Lett. 30, 2354-2356 (2005). [CrossRef] [PubMed]
  10. G. Scarcelli, V. Berardi, and Y. Shih, "Can Two-Photon Correlation of Chaotic Light Be Considered as Correlation of Intensity Fluctuations," Phys. Rev. Lett. 96, 063602:1-4 (2006). [CrossRef]
  11. J. Cheng and S. Han, "Classical correlated imaging from the perspective of coherent-mode representation," Phys. Rev. A 76, 023824:1-5 (2007). [CrossRef]
  12. J. Cheng, "Transfer functions in lensless ghost-imaging systems," Phys. Rev. A 78, 043823:1-5 (2008). [CrossRef]
  13. M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, "Lensless Fourier-transform ghost imaging with classical incoherent light," Phys. Rev. A,  75, 021803:1-4 (2007). [CrossRef]
  14. G. Scarcelli, V. Berardi, and Y. Shih, "Phase-conjugate mirror via two-photon thermal light imaging," Appl. Phys. Lett. 88, 061106:1-3 (2006). [CrossRef]
  15. L. Basano and P. Ottonello, "Experiment in lensless ghost imaging with thermal light," Appl. Phys. Lett. 89, 091109:1-3 (2006). [CrossRef]
  16. R. Meyers, K. S. Deacon, and Y. Shih, "Ghost-imaging experiment by measuring reflected photons," Phys. Rev. A,  77, 041801:1-4 (2008). [CrossRef]
  17. B. I. Erkmen,and J. H. Shapiro, "Unified theory of ghost imaging with Gaussian-state light," Phys. Rev. A,  77, 043809:1-13 (2008). [CrossRef]
  18. H. T. Yura, "Mutual coherence function of a finite cross section optical beam propagating in a turbulent medium," Appl. Opt. 11, 1399-1406 (1972). [CrossRef] [PubMed]
  19. J. C. Ricklin and F. M. Davidson, "Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication," J. Opt. Soc. Am. A 19, 1794-1802 (2002). [CrossRef]
  20. Y. B. Zhu, D. M. Zhao, and X. Y. Du, "Propagation of stochastic Gaussian-Schell model array beams in turbulent atmosphere," Opt. Express 16, 18437-18442 (2008). [CrossRef] [PubMed]
  21. K. C. Zhu, G. Q. Zhou, X. G. Li, X. J. Zheng, and H. Q. Tang, "Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere," Opt. Express 16, 21315-21320 (2008). [CrossRef] [PubMed]
  22. H. T. Eyyuboglu, Y. Baykal, and E. Sermutlu, "Convergence of general beams into Gaussian intensity profilesafter propagation in turbulent atmosphere," Opt. Commun. 265, 399-405 (2006). [CrossRef]
  23. M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, "Polarization changes in partially coherent EM beams propagating through turbulent atmosphere," Waves Random Media 14, 513-523 (2004). [CrossRef]
  24. G. A. Tyler and R. W. Boyd, "Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum," Opt. Lett. 34, 142-144 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited