OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 7933–7942

Refractive-index sensor based on long-range surface plasmon mode excitation with long-period waveguide grating

Q. Liu and K. S. Chiang  »View Author Affiliations

Optics Express, Vol. 17, Issue 10, pp. 7933-7942 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (311 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a refractive-index sensor that operates on the principle of exciting the long-range surface plasmon mode of a metal-coated waveguide with a long-period grating formed in the waveguide, where the wavelength at which the mode excitation occurs serves as a measure of the refractive index of the external medium. We analyze the sensor with a coupled-mode theory and highlight the effects of the waveguide parameters on the loss of the surface plasmon mode and the performance of the sensor. Our results show that the sensor can provide a sharp resonance for high precision measurements and a high sensitivity comparable to that of an optimized bulk prism-based surface plasmon sensor. Our sensor also offers much flexibility in the choice of waveguide parameters for different applications.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.6010) Integrated optics : Sensors
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: March 20, 2009
Revised Manuscript: April 27, 2009
Manuscript Accepted: April 27, 2009
Published: April 28, 2009

Q. Liu and K. S. Chiang, "Refractive-index sensor based on long-range surface plasmon mode excitation with longperiod waveguide grating," Opt. Express 17, 7933-7942 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996). [CrossRef]
  2. H. K. Patrick, A. D. Kersey, and F. Bucholtz, "Analysis of the response of long period fiber gratings to external index of refraction," J. Lightwave Technol. 16, 1606-1612 (1998). [CrossRef]
  3. S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003). [CrossRef]
  4. V. Rastogi and K. S. Chiang, "Long-period gratings in planar optical waveguides," Appl. Opt. 41, 6351-6355 (2002). [CrossRef] [PubMed]
  5. M.-S. Kwon and S.-Y. Shin, "Tunable polymer waveguide notch filter using a thermooptic long-period grating," IEEE Photon. Technol. Lett. 17, 145-147 (2005). [CrossRef]
  6. K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006). [CrossRef]
  7. Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, "Temperature sensitivity of a long-period waveguide grating in a channel waveguide," Appl. Phys. Lett. 86, 241115 (2005). [CrossRef]
  8. Y. M. Chu, K. S. Chiang and Q. Liu, "Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings," Appl. Opt. 45, 2755-2760, (2006). [CrossRef] [PubMed]
  9. W. Jin, K. S. Chiang, and Q. Liu, "Electro-optic long-period waveguide gratings in lithium niobate," Opt. Express 16,20409-20417 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-25-20409. [CrossRef] [PubMed]
  10. Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, "Widely tunable long-period waveguide grating couplers," Opt. Express 14, 12644-12654 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12644. [CrossRef] [PubMed]
  11. C. K. Chow, K. S. Chiang, Q. Liu, K. P. Lor, and H. P. Chan, "UV-written long-period waveguide grating coupler for broadband add/drop multiplexing," Opt. Commun. 282, 378-381 (2009). [CrossRef]
  12. M. S. Kwon and S. Y. Shin, "Refractive index sensitivity measurement of a long-period waveguide grating," IEEE Photon. Technol. Lett. 17, 1923-1925 (2005). [CrossRef]
  13. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  14. J. Homola, S. Yee, G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  15. J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003). [CrossRef] [PubMed]
  16. K. R. Welford and J. R. Sambles, "Coupled surface plasmons in a symmetric system," J. Mod. Opt. 35,1467-1483 (1988). [CrossRef]
  17. K. Matsubara, S. Kawata, and S. Minami, "Multilayer system for a high-precision surface plasmon resonance sensor," Opt. Lett. 15, 75-77 (1990). [CrossRef] [PubMed]
  18. R. Slavík and J. Homola, "Optical multilayers for LED-based surface plasmon resonance sensors," Appl. Opt. 45, 3752-3759 (2006). [CrossRef] [PubMed]
  19. R. Slavík and J. Homola, "Ultrahigh resolution long range surface plasmon-based sensor," Sens. Actuators B 123, 10-12 (2007). [CrossRef]
  20. M. N. Weiss, R. Srivastava, and H. Groger, "Experimental investigation of surface plasmon-based integrated-optic humidity sensor," Electron. Lett. 32, 842-843 (1996). [CrossRef]
  21. O. Hugon, P. Benech, and H. Gagnaire, "Surface plasmon chemical/biological sensor in integrated optics," Sens. Actuators B 51, 316-320 (1998). [CrossRef]
  22. R. Slavík, J. Homola, J. Ctyroky, E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Actuators B 74, 106-111 (2001). [CrossRef]
  23. Rajan, A. K. Sharma, and B. D. Gupta, "Fibre optic sensor based on long-range surface plasmon resonance: a theoretical analysis," J. Opt. A: Pure Appl. Opt. 9, 682-687 (2007). [CrossRef]
  24. G. Nemova and R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating," J. Opt. Soc. Am. B 24, 2696-2701 (2007). [CrossRef]
  25. M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, "Tunable waveguide transmission gratings based on active gain control," IEEE J. Quantum Electron. 40, 1715-1724 (2004). [CrossRef]
  26. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  27. E. Anemogiannis and E. N. Glytsis, "Multilayer waveguide: efficient numerical analysis of general structure," J. Lightwave Technol. 10, 1344-1351 (1992). [CrossRef]
  28. N. M. Lyndin, I. F. Salakhutdinov, V. A. Sychugov, B. A. Usievich, F. A. Pudonin, and O. Parriaux, "Long-range surface plasmons in asymmetric layered metal-dielectric structures," Sens. Actuators B 54,37-42 (1999). [CrossRef]
  29. Q. Liu, K. S. Chiang, and V. Rastogi, "Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence," J. Lightwave Technol. 21, 3399-3405 (2003). [CrossRef]
  30. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006). [CrossRef]
  31. A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguide," Thin Solid Films 276, 143-146 (1996). [CrossRef]
  32. MY Polymers Ltd., http://www.mypolymers.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited