OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 7943–7951

Double-angle multilayer mirrors with smooth dispersion characteristics

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz  »View Author Affiliations


Optics Express, Vol. 17, Issue 10, pp. 7943-7951 (2009)
http://dx.doi.org/10.1364/OE.17.007943


View Full Text Article

Enhanced HTML    Acrobat PDF (1292 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the feasibility of precision broadband dispersion control with multilayer mirrors produced in a single coating run. Inherent fluctuations of the group-delay dispersion (GDD) are suppressed by using the mirrors at two different angles of incidence. With a specialized version of the needle optimization algorithm, we have designed the multilayer structure to yield a complementary pair with a resultant GDD substantially free from spectral oscillations characteristic of broadband chirped multilayers. Since the mirrors employed at two different incidence angles are produced in a single deposition run, their overall dispersion is more robust to errors in layer thicknesses than that of previous complementary mirror pairs manufactured in two different steps. This offers the potential for improving production yield and quality of femtosecond dispersion control. We have successfully used the first “double-angle” mirrors for compressing pulses to a duration of 4.3 fs.

© 2009 Optical Society of America

OCIS Codes
(310.1620) Thin films : Interference coatings
(320.5520) Ultrafast optics : Pulse compression
(310.4165) Thin films : Multilayer design
(310.5696) Thin films : Refinement and synthesis methods

ToC Category:
Thin Films

History
Original Manuscript: April 17, 2009
Revised Manuscript: April 26, 2009
Manuscript Accepted: April 27, 2009
Published: April 28, 2009

Citation
V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, "Double-angle multilayer mirrors with smooth dispersion characteristics," Opt. Express 17, 7943-7951 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-7943


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, "Attosecond metrology," Nature 414, 509-513 (2001). [CrossRef] [PubMed]
  2. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, "Single-Cycle Nonlinear Optics," Science 320, 1614-1617 (2008). [CrossRef] [PubMed]
  3. F. Krausz and M. Ivanov, "Attosecond physics," Rev. Mod. Phys. 81, 163-234 (2009). [CrossRef]
  4. J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, "Source of coherent kiloelectronvolt x-rays, Nature 433, 596 (2005). [CrossRef] [PubMed]
  5. Q1. J. Seres, V. S. Yakovlev, E. Seres, Ch. Streli, P. Wobrauschek, Ch. Spielmann, and F. Krausz, "Coherent superposition of laser-driven soft-X-ray harmonics from successive sources," Nat. Phys. 3, 878-883 (2007). [CrossRef]
  6. K. Schmid, L. Veisz, F. Tavella, S. Benavides, R. Tautz, D. Herrmann, A. Buck, and B. Hidding," Few-Cycle-Laser-Driven Electron Acceleration," Phys. Rev. Lett. 102, 124801 (2009). [CrossRef] [PubMed]
  7. A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultrabroad-band soft-X-ray harmonic continua," New J. Phys. 9, 242 (2007). [CrossRef]
  8. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, "Chirped multilayer coatings for broadband dispersion control in femtosecond lasers," Opt. Lett. 19, 201-203 (1994). [CrossRef] [PubMed]
  9. R. Szipocs, A. Koházi-Kis, S. Lako, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A.V. Tikhonravov, M. K. Trubetskov, "Negative Dispersion Mirrors for Dispersion Control in Femtosecond Lasers: Chirped Dielectric Mirrors and Multi-cavity Gires-Tournois Interferometers," Appl. Phys. B 70, S51-S57 (2000).
  10. B. Golubovic, R. R. Austin, M. K. Steiner-Shepard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. Van Engen, "Double Gires—Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers," Opt. Lett. 25, 275-277 (2000). [CrossRef]
  11. V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, "High-dispersive mirrors for femtosecond lasers," Opt. Express 16, 10220-10233 (2008). [CrossRef] [PubMed]
  12. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, "Design and fabrication of double-chirped mirrors," Opt. Lett. 22, 831-833 (1997). [CrossRef] [PubMed]
  13. F. X. Kartner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, "Ultrabroadband double-chirped mirror pairs for generation of octave spectra, " J. Opt. Soc. Am. B 18, 882-885 (2001). [CrossRef]
  14. N. Matuschek, F. X. Kärtner, and U. Keller, "Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics," IEEE J. Quantum Electron. 35, 129-137 (1999). [CrossRef]
  15. P. Baum, M. Breuer, E. Riedle, and G. Steinmeyer, "Brewster-angled chirped mirrors for broadband pulse compression without dispersion oscillations," Opt. Lett. 31, 2220-2222 (2006). [CrossRef] [PubMed]
  16. G. Steinmeyer, "Brewster-angled chirped mirrors for highfidelity dispersion compensation and bandwidths exceeding one optical octave," Opt. Express 11, 2385-2396 (2003). [CrossRef] [PubMed]
  17. N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, "Back-side-coated chirped mirrors with ultrasmooth broadband dispersion characteristics," Appl. Phys. B 71, 509-522 (2000). [CrossRef]
  18. G. Tempea, V. Yakovlev, B. Bacovic, F. Krausz, and K. Ferencz, "Tilted-front-interface chirped mirrors," J. Opt. Soc. Am. B 18, 1747-1750 (2001). [CrossRef]
  19. V. Pervak, F. Krausz, A. Apolonski "Dispersion control over the UV-VIS-NIR spectral range with HfO2/SiO2 chirped dielectric multilayers," Opt. Lett. 32, 1183-1185 (2007). [CrossRef] [PubMed]
  20. V. Laude and P. Tournois, "Chirped mirror pairs for ultrabroadband dispersion control," in Digest of Conference on Lasers and Electro-Optics (CLEO(US) (Optical Society of America, 1999) 187-188.
  21. F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, "Ultrabroadband double-chirped mirror pairs for generation of octave spectra," J. Opt. Soc. Am. B 18, 882-885 (2001). [CrossRef]
  22. V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," Advances in Optical Thin Films II, Claude Amra, Norbert Kaiser, H. Angus Macleod, eds., Proc. SPIE 5963, 490-500 (2005).
  23. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, "1.5-octave chirped mirror for pulse compression down to sub-3 fs," Appl. Phys. B. 87, 5-12, (2007). [CrossRef]
  24. P. Dombi, V. S. Yakovlev, K. O'Keeffe, T. Fuji, M. Lezius, and G. Tempea, "Pulse compression with time-domain optimized chirped mirrors," Opt. Express 13, 10888-10894 (2005). [CrossRef] [PubMed]
  25. M. Trubetskov, A. Tikhonravov, and V. Pervak, "Time-domain approach for designing dispersive mirrors based on the needle optimization technique. Theory," Opt. Express 16, 20637-20647 (2008). [CrossRef] [PubMed]
  26. V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, "Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5-fs pulses," Opt. Express 17, 2207-2217 (2009). [CrossRef] [PubMed]
  27. H.A. Macleod, Thin-Film Optical Filters, 3rd edition, Bristol: Adam Hilger Ltd. (2001). [CrossRef]
  28. A. V. Tikhonravov and M. K. Trubetskov, OptiLayer Thin Film Software, http://www.optilayer.com
  29. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, "Application of the needle optimization technique to the design of optical coatings," Appl. Opt. 35, 5493-5508 (1996). [CrossRef] [PubMed]
  30. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, "Optical coating design approaches based on the needle optimization technique," Appl. Opt. 46, 704-710 (2007). [CrossRef] [PubMed]
  31. V. Pervak, F. Krausz, and A. Apolonski "Hafnium oxide films made by magnetron sputtering system," Thin Solid Films 515, 7984-7989 (2007). [CrossRef]
  32. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, J. Pistner, F. Krausz, and A. Apolonski, "Band filters: two-material technology versus rugate," Appl. Opt. 46, 1190-1193 (2007). [CrossRef] [PubMed]
  33. T. Amotchkina, M. K. Trubetskov, A. V. Tikhonravov, A. Apolonski, F. Krausz, and V. Pervak, "Measurement of group delay of dispersive mirrors with white-light interferometer," Appl. Opt. 48, 949-956 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited