OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 8012–8028

Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method

Alexandre Dupuis, Jean-François Allard, Denis Morris, Karen Stoeffler, Charles Dubois, and Maksim Skorobogatiy  »View Author Affiliations

Optics Express, Vol. 17, Issue 10, pp. 8012-8028 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1337 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report several strategies for the fabrication of porous subwavelength fibers using low density Polyethylene plastic for low-loss terahertz light transmission applications. We also characterize transmission losses of the fabricated fibers in terahertz using a novel non-destructive directional coupler method. Within this method a second fiber is translated along the length of the test fiber to probe the power attenuation of a guided mode. The method is especially suitable for measuring transmission losses through short fiber segments, a situation in which standard cutback method is especially difficult to perform. We demonstrate experimentally that introduction of porosity into a subwavelength rod fiber, further reduces its transmission loss by as much as a factor of 10. The lowest fiber loss measured in this work is 0.01cm-1 and it is exhibited by the 40% porous subwavelength fiber of diameter 380 μm. For comparison, the loss of a rod-in-the-air subwavelength fiber of a similar diameter was measured to be ~ 0.1cm-1, while the bulk loss of a PE plastic used in the fabrication of such fibers is ≳ 1cm-1. Finally, we present theoretical studies of the optical properties of individual subwavelength fibers and a directional coupler. From these studies we conclude that coupler setup studied in this paper also acts as a low pass filter with a cutoff frequency around 0.3THz. Considering that the spectrum of a terahertz source used in this work falls off rapidly below 0.25THz, the reported loss measurements are, thus, the bolometer averages over the ~ 0.25THz –0.3THz region.

© 2009 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 9, 2009
Revised Manuscript: April 27, 2009
Manuscript Accepted: April 27, 2009
Published: April 29, 2009

Alexandre Dupuis, Jean-François Allard, Denis Morris, Karen Stoeffler, Charles Dubois, and Maksim Skorobogatiy, "Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method," Opt. Express 17, 8012-8028 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 306-308 (2006). [CrossRef]
  2. R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000). [CrossRef]
  3. A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Microstructured Polymer THz Fibers," Appl. Phys. Lett. 92, 071101 (2008). [CrossRef]
  4. K. Wang and M Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004). [CrossRef] [PubMed]
  5. R. Mendis and D. Grischkowsky, "THz interconnect with low-loss and low-group velocity dispersion," IEEE Micro. Wireless Componen. Lett. 11, 444-446 (2001). [CrossRef]
  6. R. W. McGowan, G. Gallot, and D. Grischkowsky, "Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides," Opt. Lett. 24, 1431-1433 (1999). [CrossRef]
  7. T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, "Ferroelectric PVDF cladding terahertz waveguide," J. Lightwave Technol. 23, 2469-2473 (2005). [CrossRef]
  8. B. Bowden, J. A. Harrington, and O. Mitrofanov, "Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings," J. Appl. Phys. 104, 093110 (2008). [CrossRef]
  9. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, "Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation," Opt. Express 12, 5263-5268 (2004). [CrossRef] [PubMed]
  10. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, "Flexible terahertz fiber optics with low bend-induced losses," J. Opt. Soc. Am. B 24, 1230-1235 (2007). [CrossRef]
  11. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008). [CrossRef]
  12. Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, "Transmission loss and dispersion in plastic terahertz photonic band-gap fibers," Appl. Phys. B 91, 333-336 (2008). [CrossRef]
  13. M. Skorobogatiy and A. Dupuis, "Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance," Appl. Phys. Lett. 90, 113514 (2007). [CrossRef]
  14. A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss Terahertz guiding," Opt. Express 16, 6340-6351 (2008). [CrossRef] [PubMed]
  15. S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, "Porous fibers: a novel approach to low loss THz waveguides," Opt. Express 16, 8845 (2008). [CrossRef] [PubMed]
  16. M. Nagel, A. Marchewka, and H. Kurz, "Low-index discontinuity terahertz waveguides," Opt. Express 14, 9944-9954 (2006). [CrossRef] [PubMed]
  17. Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, "Terahertz Dielectric Properties of Polymers," J. Korean Phys. Soc. 49, 513-517 (2006).
  18. A. Boudrioua and J. C. Loulergue, "New approach for loss measurements in optical planar waveguides," Opt. Commun. 137, 37-40 (1997). [CrossRef]
  19. J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K Sun, "THz interferometric imaging using subwavelength plastic fiber based THz endoscopes," Opt. Express 16, 2494-2501 (2008). [CrossRef] [PubMed]
  20. H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, "Investigation on spectral loss characteristics of subwavelength terahertz fibers," Opt. Lett. 32, 1017-1019 (2007). [CrossRef] [PubMed]
  21. A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, "Characterisation of olefin copolymers using terahertz spectroscopy," Electron. Lett. 42, 25 (2006). [CrossRef]
  22. J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," Appl. Phys. Lett. 92, 084102 (2008). [CrossRef]
  23. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025 (2004). [CrossRef] [PubMed]
  24. M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University Press, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited