OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 8029–8035

Glass-clad single-crystal germanium optical fiber

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice  »View Author Affiliations

Optics Express, Vol. 17, Issue 10, pp. 8029-8035 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (458 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Long lengths (250 meters) of a flexible 150 μm diameter glass-clad optical fiber containing a 15 μm diameter crystalline and phase-pure germanium core was fabricated using conventional optical fiber draw techniques. X-ray diffraction and spontaneous Raman scattering measurements showed the core to be very highly crystalline germanium with no observed secondary phases. Elemental analysis confirmed a very well-defined core-clad interface with a step-profile in composition and nominally 4 weight-percent oxygen having diffused into the germanium core from the glass cladding. For this proof-of-concept fiber, polycrystalline n-type germanium of unknown dopant concentration was used. The measured infrared transparency of the starting material was poor and, as a likely outcome, the attenuation of the resultant fiber was too high to be measured. However, the larger Raman cross-section, infrared and terahertz transparency of germanium over silicon should make these fibers of significant value for fiber-based mid- to long-wave infrared and terahertz waveguides and Raman-shifted infrared light sources once high-purity, high-resistivity germanium is employed.

© 2009 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(160.2290) Materials : Fiber materials
(160.4330) Materials : Nonlinear optical materials
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials
(190.0190) Nonlinear optics : Nonlinear optics
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 9, 2009
Revised Manuscript: April 27, 2009
Manuscript Accepted: April 28, 2009
Published: April 29, 2009

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, "Glass-clad single-crystal germanium optical fiber," Opt. Express 17, 8029-8035 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006). [CrossRef]
  2. V. Raghunathan, D. Borlaug, R. Rice, and B. Jalali, “Demonstration of a mid-infrared silicon Raman amplifier,” Opt. Express 15(22), 14355–14362 (2007). [CrossRef] [PubMed]
  3. P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006). [CrossRef] [PubMed]
  4. D.-J. Won, M. Ramirez, H. Kang, V. Gopalan, N. Baril, J. Calkins, J. Badding, and P. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007). [CrossRef]
  5. B. Jackson, P. Sazio, and J. Badding, “Single crystal semiconductor wires integrated into microstructured optical fibers,” Adv. Mater. 20(6), 1135–1140 (2008). [CrossRef]
  6. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008). [CrossRef]
  7. J. Parker, D. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967). [CrossRef]
  8. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt. 34(30), 6848–6854 (1995). [CrossRef] [PubMed]
  9. J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the Fabrication of All-Glass Optical Fibers from Crystals,” J. Appl. Phys. 105(5), 053110 (2009). [CrossRef]
  10. G. M. Sheldrick, “A short history of SHELX,” Acta Crystallogr. A 64(1), 112–122 (2008). [CrossRef]
  11. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, and J. van de Streek, “Mercury: visualization and analysis of crystal structures,” J. Appl. Cryst. 39(3), 453–457 (2006). [CrossRef]
  12. J. Donohue, The Structure of the Elements, Wiley, New York, (1974).
  13. J. Scott, “Raman spectrum of GeO2,” Phys. Rev. B 1(8), 3488–3493 (1970). [CrossRef]
  14. R. Stolen, “Fundamentals of Raman Amplification in Fibers,” in Raman Amplifiers for Telecommunication 1, M. Islam, editor, Springer (New York, 2004); see Appendix A2.5.
  15. B. Frey, D. Leviton, and T. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006). [CrossRef]
  16. J. Pankove and P. Aigrain, “Optical absorption of arsenic-doped degenerate germanium,” Phys. Rev. 126(3), 956–962 (1962). [CrossRef]
  17. E. Capron and O. Brill, “Absorption coefficient as a function of resistance for optical germanium at 10.6 μm,” Appl. Opt. 12(3), 569–572 (1973). [CrossRef] [PubMed]
  18. P. Bishop and A. Gibson, “Absorption coefficient of germanium at 10.6 μm,” Appl. Opt. 12(11), 2549–2550 (1973). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited