OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 8036–8045

High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures

Edward C. Kinzel and Xianfan Xu  »View Author Affiliations

Optics Express, Vol. 17, Issue 10, pp. 8036-8045 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In recent years, many nanophotonic devices have been developed. Much attention has been given to the waveguides carrying surface plasmon polariton modes with subwavelength confinement and long propagation length. However, coupling far field light into a nano structure is a significant challenge. In this work, we present an architecture that enables high efficiency excitation of nanoscale waveguides in the direction normal to the waveguide. Our approach employs a bowtie aperture to provide both field confinement and high transmission efficiency. More than six times the power incident on the open area of the bowtie aperture can be coupled into the waveguide. The intensity in the waveguide can be more than twenty times higher than that of the incident light, with mode localization better than λ2/250. The vertical excitation of waveguide allows easy integration. The bowtie aperture/waveguide architecture presented in this work will open up numerous possibilities for the development of nanoscale optical systems for applications ranging from localized chemical sensing to compact communication devices.

© 2009 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: February 20, 2009
Revised Manuscript: April 26, 2009
Manuscript Accepted: April 28, 2009
Published: April 29, 2009

Edward C. Kinzel and Xianfan Xu, "High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures," Opt. Express 17, 8036-8045 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007). [CrossRef]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  4. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  5. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, 1988).
  6. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407–035415 (2006). [CrossRef]
  7. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  8. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, (Wiley, 1994).
  9. D. M. Pozar, Microwave Engineering, (Wiley, 2003).
  10. T. A. Mandviwala, B. A. Lail, and G. D. Boreman, “Characterization of microstrip transmission lines at IR frequencies – modeling, fabrication and measurements,” Microw. Opt. Technol. Lett. 50(5), 1232–1237 (2008). [CrossRef]
  11. A. Hosseini, H. Nejati, and Y. Massoud, “Design of a maximally flat optical low pass filter using plasmonic nanostrip waveguides,” Opt. Express 15(23), 15280–15286 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?id=144685 . [CrossRef] [PubMed]
  12. S. A. Maier, “Waveguiding: The best of both worlds,” Nat. Photonics 2(8), 460–461 (2008). [CrossRef]
  13. H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80(3), 404–406 (2002). [CrossRef]
  14. J. Helszajn, Ridge waveguides and passive microwave components, (Institution of Electrical Engineers, 2000).
  15. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997). [CrossRef]
  16. X. Shi and L. Hesselink, “Mechanisms for Enhancing Power Throughput from Planar Nano-Apertures for Near-Field Optical Data Storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002). [CrossRef]
  17. E. X. Jin and X. Xu, “Finite-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004). [CrossRef]
  18. E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106–111108 (2005). [CrossRef]
  19. E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110–153112 (2006). [CrossRef]
  20. K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004). [CrossRef]
  21. L. Wang, S. M. V. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006). [CrossRef] [PubMed]
  22. N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-4-2584 . [CrossRef] [PubMed]
  23. L. Wang and X. Xu, “L.; X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007). [CrossRef]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  25. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965), http://www.opticsinfobase.org/abstract.cfm?uri=josa-55-10-1205 . [CrossRef]
  26. A. Degiron and D. R. Smith, “Numerical simulations of long-range plasmons,” Opt. Express 14(4), 1611–1625 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-4-1611 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (4272 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited