OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 8062–8080

Source Reconstruction for Spectrally-resolved Bioluminescence Tomography with Sparse A priori Information

Yujie Lu, Xiaoqun Zhang, Ali Douraghy, David Stout, Jie Tian, Tony F. Chan, and Arion F. Chatziioannou  »View Author Affiliations

Optics Express, Vol. 17, Issue 10, pp. 8062-8080 (2009)

View Full Text Article

Acrobat PDF (1888 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Through restoration of the light source information in small animals in vivo, optical molecular imaging, such as fluorescence molecular tomography (FMT) and bioluminescence tomography (BLT), can depict biological and physiological changes observed using molecular probes. A priori information plays an indispensable role in tomographic reconstruction. As a type of a priori information, the sparsity characteristic of the light source has not been sufficiently considered to date. In this paper, we introduce a compressed sensing method to develop a new tomographic algorithm for spectrally-resolved bioluminescence tomography. This method uses the nature of the source sparsity to improve the reconstruction quality with a regularization implementation. Based on verification of the inverse crime, the proposed algorithm is validated with Monte Carlo-based synthetic data and the popular Tikhonov regulariz ion method. Testing with different noise levels and single/multiple source settings at different depths demonstrates the improved performance of this algorithm. Experimental reconstruction with a mouse-shaped phantom further shows the potential of the proposed algorithm.

© 2009 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 26, 2009
Revised Manuscript: April 25, 2009
Manuscript Accepted: April 26, 2009
Published: April 29, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Yujie Lu, Xiaoqun Zhang, Ali Douraghy, David Stout, Jie Tian, Tony F. Chan, and Arion F. Chatziioannou, "Source Reconstruction for Spectrally-resolved Bioluminescence Tomography with Sparse A priori Information," Opt. Express 17, 8062-8080 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. Weissleder and U. Mahmood, "Molecular imaing," Radiology 219,316-333 (2001).
  2. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weisslder, "Looking and listening to light: the evolution of whole body photonic imaging," Nat. Biotechnol. 23,313-320 (2005). [CrossRef]
  3. J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discovery 7,591-607 (2008). [CrossRef]
  4. C. H. Contag and M. H. Bachmann, "Advances in bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4,235-260 (2002). [CrossRef]
  5. S. Bhaumik and S. S. Gambhir, "Optical imaging of renilla luciferase reporter gene expression in living mice," Proc. Natl. Acad. Sci. USA 99,377-382 (2002). [CrossRef]
  6. T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17,545-580 (2003). [CrossRef]
  7. G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. F. Meinel, "Development of the first bioluminescence CT scanner," Radiology 566,229 (2003).
  8. G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31,2289-2299 (2004). [CrossRef]
  9. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50,4225-4241 (2005). [CrossRef]
  10. Y. Lv, J. Tian,W. Cong, and G. Wang, "Experimental study on bioluminescence tomography with multimodality fusion," Int. J. Biomed. Img. 1,86741 (2007).
  11. C. Kuo, O. Coquoz, D. G. Stearns, and B. W. Rice, "Diffuse luminescence imaging tomography of in vivo bioluminescent markers using multi-spetral data," in Proceedings of the 3rd International Meeting of the Society (MIT Press, 2004), p. 227.
  12. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50,5421-5441 (2005). [CrossRef]
  13. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, "Spectrally resolved bioluminescence optical tomography," Opt. Lett. 31,365-367 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-3-365. [CrossRef]
  14. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13,6756-6771 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6756. [CrossRef]
  15. G. Wang, H. Shen, W. Cong, S. Zhao, and G. Wei, "Temperature-modulated bioluminescence tomography," Opt. Express 14,7852-7871 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7852. [CrossRef]
  16. A. D. Klose, V. Ntziachristos, and A. H. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202,323-345 (2005). [CrossRef]
  17. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50,R1-R43 (2005). [CrossRef]
  18. Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, "A multilevel adaptive finite element algorithm for bioluminescence tomography," Opt. Express 14,8211-8223 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8211. [CrossRef]
  19. Y. Lv, J. Tian, W. Cong, G. Wang, W. Yang, C. Qin, and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation," Phys. Med. Biol. 52,4497-4512 (2007). [CrossRef]
  20. X. Gu, Q. Zhang, L. Larcom, and H. Jiang, "Three-dimensional bioluminescence tomography with model-based reconstruction," Opt. Express 12,3996-4000 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-3996. [CrossRef]
  21. S. Holder, Electrical Impedance Tomography, (Institute of Physics Publishing, Bristol and Philadelphia, 2005).
  22. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging," J. Biomed. Opt. 12,024007 (2007). [CrossRef]
  23. W. Cong, K. Durairaj, L. V. Wang, and G. Wang, "A Born-type approximation method for bioluminescence tomography," Med. Phys. 33,679-686 (2006). [CrossRef]
  24. D. Donoho and I. Johnstone, "Ideal spatial adaption via wavelet shrinkage," Biometrika 81,425-455 (1994). [CrossRef]
  25. S. G. Mallat and Z. Zhang, "Matching pursuits with time-frequency dictionaries," IEEE Trans. Signal Process. 41,3397-3415 (2002). [CrossRef]
  26. L. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," J. Phys. D 60,259-268 (1992). [CrossRef]
  27. E. J. Candès, J. K. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Commun. Pur. Appl. Math. 59,1207-1223 (2006). [CrossRef]
  28. E. J. Candès, "Compressive sampling," inProc. of the International Congress of Mathematicians, Madrid, Spain 3,1433-1452 (2006).
  29. C. Kuo, O. Coquoz, T. Troy, D. Zwarg, and B. Rice, "Bioluminescent tomography for in vivo localization and quantification of luminescent sources from a multiple-view imaging system," Mol. Img. 4,370 (2005).
  30. G. Wang, H. Shen, K. Durairaj, X. Qian, and W. Cong, "The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data," Int. J. Biomed. Img.2006:Article ID 58601, (2006).
  31. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22,1779- 1792 (1995). [CrossRef]
  32. S. S. Rao, The finite element method in engineering, (Butterworth-Heinemann, Boston, 1999).
  33. R. Roy and E. M. Sevick-Muraca, "Active constrained truncated newton method for simple-bound optical tomography," J. Opt. Soc. Am. A 17,1627-1641 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-17-9-1627. [CrossRef]
  34. S. J. Benson and J. Morè, "A limited-memory variable-metric algorithm for bound-constrained minimization," Technical Report ANL/MCS-P909-0901, Mathematics and Computer Science Division, Argonne National Lab-oratory (2001).
  35. H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation enviroment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11,1029-1038 (2004). [CrossRef]
  36. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, "Determining the optical properties of turbid mediaby using the addingdoubling method," Appl. Opt. 32,559-568 (1993), http://www.opticsinfobase.org/abstract.cfm?URI=ao-32-4-559. [CrossRef]
  37. Michael Lustig, Sparse MRI, PhD thesis, Stanford University, 2008.
  38. D. Donoho, "For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution," Commun. Pur. Appl. Math. 59,797-829 (2006). [CrossRef]
  39. A. D. Klose and B. Beattie, "Bioluminescence tomography with SP3 equations," in Biomedical Optics Topical Meeting, 2008, http://www.opticsinfobase.org/abstract.cfm?URI=BIOMED-2008-BMC8.
  40. J. Cai, S. Osher, and Z. Shen, "Convergence of the Linearized Bregman Iteration for _1-Norm Minimization," CAM report 08-52, 2008.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited