OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 8125–8136

Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography

Adeel Ahmad, Steven G. Adie, Eric J. Chaney, Utkarsh Sharma, and Stephen A. Boppart  »View Author Affiliations

Optics Express, Vol. 17, Issue 10, pp. 8125-8136 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel image acquisition technique for Optical Coherence Tomography (OCT) that enables manual lateral scanning. The technique compensates for the variability in lateral scan velocity based on feedback obtained from correlation between consecutive A-scans. Results obtained from phantom samples and biological tissues demonstrate successful assembly of OCT images from manually-scanned datasets despite non-uniform scan velocity and abrupt stops encountered during data acquisition. This technique could enable the acquisition of images during manual OCT needle-guided biopsy or catheter-based imaging, and for assembly of large field-of-view images with hand-held probes during intraoperative in vivo OCT imaging.

© 2009 Optical Society of America

OCIS Codes
(120.5800) Instrumentation, measurement, and metrology : Scanners
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 23, 2009
Revised Manuscript: April 20, 2009
Manuscript Accepted: April 21, 2009
Published: April 29, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Adeel Ahmad, Steven G. Adie, Eric J. Chaney, Utkarsh Sharma, and Stephen A. Boppart, "Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography," Opt. Express 17, 8125-8136 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. W. Drexler, and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer, New York 2008). [CrossRef]
  3. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, "Optical coherence tomography: a review of clinical development from bench to bedside," J. Biomed. Opt 12, 051403-051421 (2007). [CrossRef] [PubMed]
  4. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006). [CrossRef] [PubMed]
  5. Z. Chen, Z. Yonghua, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, "Optical Doppler tomography," IEEE J. Sel. Top. Quantum Electron. 5, 1134-1142 (1999). [CrossRef]
  6. J. J. Pasquesi, S. C. Schlachter, M. D. Boppart, E. J. Chaney, S. J. Kaufman, and S. A. Boppart, "In vivo detection of exercise-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography," Opt. Express 14, 1547-1556 (2006). [CrossRef] [PubMed]
  7. A. L. Oldenburg, V. Crecea, S. A. Rinne, and S. A. Boppart, "Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues," Opt. Express 16, 11525-11539 (2008). [PubMed]
  8. S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, "Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer," Breast Cancer Res. Treatment 84, 85-97 (2004). [CrossRef]
  9. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001). [PubMed]
  10. F. I. Feldchtein, V. M. Gelikonov, and G. V. Gelikonov, "Design of OCT scanners" in Handbook of optical coherence tomography (Marcel Dekker, Inc, 2002).
  11. X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, "Imaging needle for optical coherence tomography," Opt. Lett. 25, 1520-1522 (2000). [CrossRef]
  12. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, "Forward-imaging instruments for optical coherence tomography," Opt. Lett. 22, 1618-1620 (1997). [CrossRef]
  13. S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, "Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection," J. Biomed. Opt 13, 020505 (2008). [CrossRef] [PubMed]
  14. P. Cinquin, E. Bainville, C. Barbe, E. Bittar, V. Bouchard, I. Bricault, G. Champleboux, M. Chenin, L. Chevalier, Y. Delnondedieu, L. Desbat, V. Dessenne, A. Hamadeh, D. Henry, N. Laieb, S. Lavallee, J. M. Lefebvre, F. Leitner, Y. Menguy, F. Padieu, O. Peria, A. Poyet, M. Promayon, S. Rouault, P. Sautot, J. Troccaz, and P. Vassal, "Computer assisted medical interventions," IEEE. Eng. Med. Biol. Mag 14, 254-263 (1995). [CrossRef]
  15. R. L. Galloway, "The process and development of image guided procedures," Annu. Rev. Biomed. Eng 3, 83-108 (2001). [CrossRef] [PubMed]
  16. A. H. Gee, R. James Housden, P. Hassenpflug, G. M. Treece, and R. W. Prager, "Sensorless freehand 3D ultrasound in real tissue: Speckle decorrelation without fully developed speckle," Med. Image Anal. 10, 137-149 (2006). [CrossRef]
  17. L. Mercier, T. Langø, F. Lindseth, and D. L. Collins, "A review of calibration techniques for freehand 3-D ultrasound systems," Ultrasound Med. Biol 31, 449-471 (2005). [CrossRef] [PubMed]
  18. P. Hassenpflug, R. W. Prager, G. M. Treece, and A. H. Gee, "Speckle classification for sensorless freehand 3-D ultrasound," Ultrasound Med. Biol 31, 1499-1508 (2005). [CrossRef] [PubMed]
  19. T. A Tuthill, J. F. Krucker, J. B. Fowlkes, and P. L. Carson, "Automated three-dimensional US frame positioning computed from elevational speckle decorrelation," Radiology 209, 575-582 (1998). [PubMed]
  20. L. Pai-Chi, C. Chong-Jing, and Y. Chih-Kuang, "On velocity estimation using speckle decorrelation " IEEE. Trans. Ultrason. Ferroelectr. Freq. Control 48, 1084-1091 (2001). [CrossRef]
  21. R. W. Prager, A. H. Gee, G. M. Treece, C. J. C. Cash, and L. H. Berman, "Sensorless freehand 3-D ultrasound using regression of the echo intensity," Ultrasound Med. Biol 29, 437-446 (2003). [CrossRef] [PubMed]
  22. A. Krupa, G. Fichtinger, and G. D. Hager, "Full Motion Tracking in Ultrasound Using Image Speckle Information and Visual Servoing," in Proceedings of IEEE International Conference on Robotics and Automation (2007), pp. 2458-2464. [CrossRef]
  23. P. C. Li, C. Y. Li, and W. C. Yeh, "Tissue motion and elevational speckle decorrelation in freehand 3D ultrasound," Ultrason. Imaging 24, 1-12 (2002). [PubMed]
  24. K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, "Texture analysis of optical coherence tomography images: feasibility for tissue classification," J. Biomed. Opt 8, 570-575 (2003). [CrossRef] [PubMed]
  25. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, "OCT-based elastography for large and small deformations," Opt. Express 14, 11585-11597 (2006). [CrossRef] [PubMed]
  26. D. D. Duncan, and S. J. Kirkpatrick, "Processing algorithms for tracking speckle shifts in optical elastography of biological tissues," J. Biomed. Opt 6, 418-426 (2001). [CrossRef] [PubMed]
  27. D. D. Duncan, and S. J. Kirkpatrick, "Performance analysis of a maximum-likelihood speckle motion estimator," Opt. Express 10, 927-941 (2002). [PubMed]
  28. H.-J. Ko, W. Tan, R. Stack, and S. A. Boppart, "Optical coherence elastography of engineered and developing tissue," Tissue Eng 12, 63-73 (2006). [CrossRef] [PubMed]
  29. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004). [CrossRef] [PubMed]
  30. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007). [CrossRef]
  31. J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt 4, 95-105 (1999). [CrossRef]
  32. W. Luo, D. L. Marks, T. S. Ralston, and S. A. Boppart, "Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system," J. Biomed. Opt 11, 021014-021018 (2006). [CrossRef] [PubMed]
  33. A. M. Zysk and S. A. Boppart, "Computational methods for analysis of human breast tumor tissue in optical coherence tomography images," J. Biomed. Opt 11, 054015 (2006). [CrossRef] [PubMed]
  34. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef] [PubMed]
  35. R. J. Housden, A. H. Gee, R. W. Prager, and G. M. Treece, "Rotational motion in sensorless freehand three-dimensional ultrasound," Ultrasonics 48, 412-422 (2008). [CrossRef] [PubMed]
  36. R. J. Housden, A. H. Gee, G. M. Treece, and R. W. Prager, "Subsample interpolation strategies for sensorless freehand 3D ultrasound," Ultrasound Med. Biol 32, 1897-1904 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited