OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 8137–8143

Effect of polarization on symmetry of focal spot of a plasmonic lens

Jun Wang, Wei Zhou, and Anand K. Asundi  »View Author Affiliations

Optics Express, Vol. 17, Issue 10, pp. 8137-8143 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (274 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When one uses a metallic nanostructure to excite surface plasmon polaritons (SPPs) for subwavelength focusing, there is the distinct shape of the light emerging from the plasmonic lens in the transverse directions due to 2D confinement of SPPs. To study the tuning of symmetry of a focal spot, we consider an annular plasmonic lens incident with a polarized plane wave having various polarization states, including circular polarization (CP), elliptical polarization (EP), and radial polarization (RP), compared to linear polarization (TM). We find that plasmonic modes are independent of the polarization approach and the different polarization states enable to tune transverse electric field. More specifically, for CP case where the phase function Re[exp()]= 0, the total-electric-field intensity is distributed uniformly in the transverse plane, while for RP case where the phase function Re[exp()]= 1, a significant intensity contrast is observed in the two diagonal directions. We show an agreement between the analytical description and numerical simulation.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5430) Physical optics : Polarization
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

Original Manuscript: March 30, 2009
Revised Manuscript: April 23, 2009
Manuscript Accepted: April 26, 2009
Published: April 29, 2009

Jun Wang, Wei Zhou, and Anand K. Asundi, "Effect of polarization on symmetry of focal spot of a plasmonic lens," Opt. Express 17, 8137-8143 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999). [PubMed]
  2. S. Kawata, Near-field Optics and Surface Plasmon Polaritons (Springer, Berlin, 2001). [CrossRef]
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  4. W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Ann. Rev. Phys. Chem. 49, 569-638 (1998). [CrossRef]
  5. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  6. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano. Lett. 5, 1726-1729 (2005). [CrossRef] [PubMed]
  7. N. Fang, Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-11-7-682. [CrossRef] [PubMed]
  8. Z. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642-644 (2004). [CrossRef]
  9. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, H. Hua, U. Welp, E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano. Lett. 5, 1399-1402 (2005). [CrossRef] [PubMed]
  10. Y. Fu, W. Zhou, L. E. N. Lennie, C. Du, and X. Luo, "Plasmonic microzone plate: superfocusing at visible regime," Appl. Phys. Lett. 87, 061124 (2007). [CrossRef]
  11. H. Ko, H. C. Kim, and M. Cheng, "Light transmission through a metallic/dielectric nano-optic lens," J. Vac. Sci. Technol. B 26, 62188-2191 (2008). [CrossRef]
  12. H. C. Kim, H. Ko, and M. Cheng, "Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer," J. Vac. Sci. Technol. B 26, 2197-2203 (2008). [CrossRef]
  13. J. Wang and W. Zhou, "Subwavelength beaming using depth-tuned annular nanostructures," J. Mod. Opt. (DOI: 10.1080/09500340902812094, in press) (2009).
  14. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000). [CrossRef]
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  16. D. F. V. James and E. Wolf, "Determination of the degree of coherence of light from spectroscopic measurements," Opt. Commun. 145, 1-4 (1998). [CrossRef]
  17. FDTD Solutions, from Lumerical Solutions Inc., http://www.lumerical.com.
  18. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  19. Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88, 171108 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited