OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 8294–8301

Plasmonic crystal for efficient energy transfer from fluorescent molecules to long-range surface plasmons

Takayuki Okamoto, Janne Simonen, and Satoshi Kawata  »View Author Affiliations


Optics Express, Vol. 17, Issue 10, pp. 8294-8301 (2009)
http://dx.doi.org/10.1364/OE.17.008294


View Full Text Article

Enhanced HTML    Acrobat PDF (401 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Corrugated metallic thin film structures that do not support short-range surface plasmon modes but do support long-range modes are discussed. The coupling efficiency of the energy of excited fluorescent molecules to long-range modes is theoretically calculated using the rigorous coupled wave approach. The obtained maximum coupling efficiency is found to be 55%, more that two times higher than the efficiency of uncorrugated metallic thin films.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2160) Physical optics : Energy transfer
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 2, 2009
Revised Manuscript: April 17, 2009
Manuscript Accepted: April 29, 2009
Published: May 1, 2009

Citation
Takayuki Okamoto, Janne Simonen, and Satoshi Kawata, "Plasmonic crystal for efficient energy transfer from fluorescent molecules to long-range surface plasmons," Opt. Express 17, 8294-8301 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-8294


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003). [CrossRef]
  2. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  3. S. Kawata, ed. Near-field and surface plasmon polaritons, (Springer, Berlin, 2001). [CrossRef]
  4. D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402 (2003). [CrossRef] [PubMed]
  5. T. Okamoto, F. H’Dhili, and S. Kawata, "Towards plasmonic bandgap laser," Appl. Phys. Lett. 853968 (2004). [CrossRef]
  6. J. Seidel, S. Grafstrom, and L. Eng, "Stimulated emission of surface plasmons at the ineterface between a silver film and an optically pumped dye solution," Phys. Rev. Lett. 94, 177401 (2005). [CrossRef] [PubMed]
  7. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, "Enhancement of surface plasmon in an Ag aggregate by optical gain in a dielectric medium," Opt. Lett. 31, 3022-3024 (2006). [CrossRef] [PubMed]
  8. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginov, and V. A. Podolskiy, "Stimulated emission of surface plasmon polaritons," Phys. Rev. Lett. 101, 226806 (2008). [CrossRef] [PubMed]
  9. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981). [CrossRef]
  10. R. R. Chance, A. Prock, and R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978). [CrossRef]
  11. W. H. Weber and C. F. Eagen, "nergy transfer from an excited dye molecule to the surface plasmons of an adjacent metal," Opt. Lett. 4, 236-238 (1979). [CrossRef] [PubMed]
  12. G. Winter, S. Wedge, and W. L. Barnes, "Can lasing at visible wavelength be achieved using the low-loss longrange surface plasmon-polariton mode?," New J. Phys. 8, 125-138 (2006). [CrossRef]
  13. T. Okamoto, J. Simonen, and S. Kawata, "Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach," Phys. Rev. B 77, 115425 (2008). [CrossRef]
  14. L. Li, "Formulation and comparison of two recursive matrix algorithms for modeling layerd diffraction gratings," J. Opt. Soc. Am. A 13, 1024-1035 (1996). [CrossRef]
  15. L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A 13, 1870- 1876 (1996). [CrossRef]
  16. M.  Nevi ere and E. Popov, Light Propagation in Periodic Media, (Marcel Dekker, New York, 2003).
  17. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  18. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, "Hotonic gaps in the dispersion of surface plasmons on grating," Phys. Rev. B 51, 11164-11168 (1995). [CrossRef]
  19. G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984). [CrossRef]
  20. J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, "Transmission resonances on metallic grating with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999). [CrossRef]
  21. S. Collin, F. Pardo, R. Teissier, and J. -L. Pelouard, "Strong discontinuities in the complex photonic band structure of transmission metallic grating," Phys. Rev. B 63, 033107 (2001). [CrossRef]
  22. F. J. Garcia-Vidal, and L. Martin-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002). [CrossRef]
  23. F. Marquier, J. -J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, "Resonant transmission through a metallic film due to coupled modes," Opt. Express 13, 70-76 (2005). [CrossRef] [PubMed]
  24. P. B. Catrysse, G. Veronis, H. Shin, J. -T. Shen, and S. Fan, "Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits," Appl. Phys. Lett. 88, 031101 (2006). [CrossRef]
  25. J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, "Metallodielectric gratings with subwavelength slots: Optical properties," Phys. Rev. 68, 205103 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited