OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 8310–8318

Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing

Yuichi Nakazaki and Shinji Yamashita  »View Author Affiliations

Optics Express, Vol. 17, Issue 10, pp. 8310-8318 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (747 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a wavelength-swept fiber laser with high speed and wide tuning range, and its application to fiber sensors. The laser is based on the dispersion tuning technique, which does not require any optical tunable filter in the laser cavity. By directly modulating the semiconductor amplifier and adjusting the dispersion in the cavity, a wide wavelength tuning range of 178.7 nm and a fast tuning rate of over 200 kHz are obtained. The wavelength-swept laser source is applied to a dynamic fiber Bragg grating sensing system. Dynamic measurement of a 150 Hz sinusoidal strain is demonstrated with a measuring speed as fast as 40 kHz.

© 2009 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(140.4050) Lasers and laser optics : Mode-locked lasers
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 3, 2009
Revised Manuscript: March 15, 2009
Manuscript Accepted: April 19, 2009
Published: May 1, 2009

Yuichi Nakazaki and Shinji Yamashita, "Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing," Opt. Express 17, 8310-8318 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Y. Ryu, W. - K. Lee, H. S. Moon, H. S. Suh, "Tunable erbium-doped fiber ring laser for applications of infrared absorption spectroscopy," Opt. Commun. 275, 379-384 (2007). [CrossRef]
  2. C. Chong, A. Morosawa and T. Sakai, "High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008). [CrossRef]
  3. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005). [CrossRef] [PubMed]
  4. R. Huber, D. C. Adler and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006). [CrossRef] [PubMed]
  5. S. Yamashita and M. Asano, "Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning," Opt. Express 14, 9299-9306 (2006). [CrossRef] [PubMed]
  6. R. Konishi and S. Yamashita, "Widely and fast wavelength-tunable mode-locked linear cavity fiber laser," The 13th microoptics conference 2007, 2007.
  7. K. Hotate and Z. He, "Synthesis of optical-coherence function and its applications in distributed and multiplexed optical sensing," J. Lightwave Technol. 24, 2541-2557 (2006). [CrossRef]
  8. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber Grating Sensors," J. Lightwave Technol. 15, 1442-1463 (1997). [CrossRef]
  9. K. Hotate and K. Kajiwara, "Proposal and experimental verification of Bragg wavelength distribution measurement within a long-length FBG by synthesis of optical coherence function," Opt. Express 16, 7881-7887 (2008). [CrossRef] [PubMed]
  10. Turan Erdogan, "Fiber Grating Spectra," J. Lightwave Technol. 15, 1277-1294 (1997). [CrossRef]
  11. K. O. Hill and G. Meltz, "Fiber Bragg Grating Technology Fundamental and Overview," J. Lightwave Technol. 15, 1263-1276 (1997). [CrossRef]
  12. A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett. 18, 1370-1372 (1993). [CrossRef] [PubMed]
  13. C. - Y. Ryu and C. - S. Hong, "Development of fiber Bragg grating sensor system using wavelength-swept fiber laser," I. O. P. Smart material and structure 11, 468-473 (2002). [CrossRef]
  14. Y. Wang, Y. Cui, and B. Yun, "A Fiber Bragg Grating Sensor System for Simultaneously Static and Dynamic Measurements with a Wavelength-swept Fiber Laser," IEEE Photon. Technol. Lett. 18, 1539-1541 (2006). [CrossRef]
  15. E. J. Jung, C. - S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, "Characteristics of FBG sensor interrogation based on FDML wavelength swept laser," Opt. Express 16, 16552-16560 (2008). [PubMed]
  16. S. Li and K. T. Chan, "Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser," Appl. Phys. Lett. 72, 1954-1956 (1998). [CrossRef]
  17. K. Tamura and M. Nakazawa, "Dispersion-tuned harmonically mode-locked fiber ring laser for selfsynchronization to an external clock," Opt. Lett. 21, 1984-1986 (1996). [CrossRef] [PubMed]
  18. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3432 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited