OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 8382–8394

Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method

Ming Li, Xuxing Chen, Junya Hayashi, and Hongpu Li  »View Author Affiliations


Optics Express, Vol. 17, Issue 10, pp. 8382-8394 (2009)
http://dx.doi.org/10.1364/OE.17.008382


View Full Text Article

Enhanced HTML    Acrobat PDF (418 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A double sampling method enabling to have excellent channel uniformity and high in-band energy efficiency is firstly proposed for the design of an ultrahigh-channel-count fiber Bragg grating (FBG), which is based on the simultaneously utilization of an amplitude-assisted phase sampling (AAPS) function and a phase-only sampling (POS) function. As examples, two typical 10-dB FBGs with a length of 12 cm, dispersion of - 1360ps/nm, channel spacing of 0.8 nm, and a consecutive 135- and 405- channels are numerically designed. The maximum index-modulations required are about 0.8×10-3, and 1.3×10-3, respectively. Compared with the proposed method, the other two kinds of double sampling schemes by utilizing either the double AAPS (i.e., AAPS+AAPS) or the double POS (i.e., POS+POS) have also been introduced for the design of the multichannel FBGs. Fabrication tolerances to the designed 135-channel FBG obtained with the AAPS plus POS method are numerically investigated.

© 2009 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2340) Fiber optics and optical communications : Fiber optics components
(260.2030) Physical optics : Dispersion
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 24, 2009
Revised Manuscript: April 30, 2009
Manuscript Accepted: April 30, 2009
Published: May 1, 2009

Citation
Ming Li, Xuxing Chen, Junya Hayashi, and Hongpu Li, "Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method," Opt. Express 17, 8382-8394 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-8382


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, "Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings," Electron. Lett. 30, 899-901(1995). [CrossRef]
  2. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, "Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation," IEEE Photon. Technol. Lett. 10, 842-844 (1998). [CrossRef]
  3. Y. Painchaud, A. Mailoux, H. Chotard, E. Pelletier, and M. Guy, "Multi-channel fiber Bragg gratings for dispersion and slope compensation," in Proc. Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2002), paper ThAA5.
  4. A. V. BuryakK. Y. Kolossovski, and D. Y. Stepanov, "Optimization of refractive index sampling for multichannel fiber Bragg gratings," IEEE J. Quantum Electron. 39, 91-98 (2003). [CrossRef]
  5. Q. Wu, C. Yu, K. Wang, X. Wang, Z. Yu, H. Chan, and P. Chu, "New sampling-based design of simultaneous compensation of both dispersion and dispersion slope for multichannel fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 381-383 (2005). [CrossRef]
  6. H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, "Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation," J. Lightwave Technol. 21, 2074-2083 (2003). [CrossRef]
  7. H. Lee and G. Agrawal, "Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope dispersion," IEEE Photon. Technol. Lett. 15, 1091-1093 (2003). [CrossRef]
  8. H. Li, M. Li, K. Ogusu, Y. Sheng, and J. Rothenberg, "Optimization of a continuous phase-only sampling for high channel-count fiber Bragg gratings," Opt. Express 14, 3152-3160 (2006) [CrossRef] [PubMed]
  9. H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, "Advances in the design and fabrication of high-channel-count fiber Bragg gratings," J. Lightwave Technol. 25, 2739-2750 (2007). [CrossRef]
  10. H. Li, M. Li, and J. Hayashi, " Ultrahigh channel-count phase-only sampled fiber Bragg grating covering the S-, C- and L- band," Opt. Lett. 34, 938-940 (2009). [CrossRef] [PubMed]
  11. X. Shu, E. Turitsyna, and I. Bennion, "Broadband fiber Bragg grating with channelized dispersion," Opt. Express 15, 10733-10738 (2007). [CrossRef] [PubMed]
  12. M. Bernier, Y. Sheng, and R. Vallée, "Ultrabroadband fiber Bragg gratings written with a highly chirped phase mask and infrared femtosecond pulses," Opt. Express 17, 3285-3290 (2009). [CrossRef] [PubMed]
  13. M. Morin, M. Poulin, A. Mailloux, F. Trépanier, and Y. Painchaud, "Full C-band slope-matched dispersion compensation based on a phase sampled Bragg grating," Proceedings of OFC04, WK1 (2004).
  14. C. Wang, J. Azana, and L. R. Chen, "Spectral Talbot-like phenomena in one-dimensional photonic bandgap structures," Opt. Lett. 29, 1590-1592 (2004). [CrossRef] [PubMed]
  15. J. Magne, P. Giaccari, S. LaRochelle, J. Azana, and L. R. Chen, "All-fiber comb filter with tunable free spectral range," Opt. Lett. 30, 2062-2064 (2005). [CrossRef] [PubMed]
  16. C. Wang, J. Azana, and L. R. Chen, "Spectral Talbot-like phenomena in one-dimensional photonic bandgap structures," Opt. Lett. 29, 1590-1592 (2004). [CrossRef] [PubMed]
  17. C. Wang, J. Azana, and and. R. Chen, "Efficient technique for increasing the channel density in multiwavelength sampled fiber Bragg grating filters," IEEE Photon. Technol. Lett. 16, 1867-1869 (2004). [CrossRef]
  18. L. R. Chen and J Azaña, "Spectral Talbot phenomena in sampled arbitrarily chirped Bragg gratings," Opt. Commun. 250, 3021-308 (2005). [CrossRef]
  19. Y. Dai, X. F. Chen, X. Xu, C. Fan, and S. Z. Xie, "High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift," IEEE Photon. Technol. Lett. 17, 1040-1042 (2005). [CrossRef]
  20. C. Lee, R. Lee, and Y. Kao, "Design of multichannel DWDM fiber Bragg grating filters by Lagrange multiplier constrained optimization," Opt. Express 14, 11002-11011 (2006). [CrossRef] [PubMed]
  21. J. Bland-Hawthorn, A. Buryak, and K. Kolossovski, "Optimization algorithm for ultrabroadband multichannel aperiodic fiber Bragg grating filters," J. Opt. Soc. Am. A 25, 153-158 (2008). [CrossRef]
  22. K. Y. Kolossovski, R. A. Sammut, A. V. Buryak, and D. Y. Stepanov, "Three-step design optimization for multi-channel fibre Bragg gratings," Opt. Express 11, 1029-1038 (2003). [CrossRef] [PubMed]
  23. M. Li, J. Hayashi, and H. Li, "Advanced design of a complex fiber Bragg grating for a multichannel asymmetrical triangular filter," J. Opt. Soc. Am. B 26, 228-234 (2009). [CrossRef]
  24. H. Li, T. Kumagai, K. Ogusu, and Y. Sheng, "Advanced design of a multichannel fiber Bragg grating based on a layer-peeling method," J. Opt. Soc. Am. B 21, 1929-1938 (2004). [CrossRef]
  25. M. Li and H. Li, "Reflection equalization of the simultaneous dispersion and dispersion-slope compensator based on a phase-only sampled fiber Bragg grating," Opt. Express 16, 9821-9828 (2008). [CrossRef] [PubMed]
  26. Y. Han, X. Dong, J. Lee, and S. Lee, "Wavelength-spacing-tunable multichannel filter incorporating a sampled chirped fiber Bragg grating based on a symmetrical chirp-tuning technique without center wavelength shift," Opt. Lett. 31, 3571-3573 (2006). [CrossRef] [PubMed]
  27. H. Lee and G. Agrawal, "Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings," IEEE Photon. Technol. Lett. 16, 635-637 (2004). [CrossRef]
  28. R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction image and diffraction plane pictures," Optik 35, 237-246 (1972).
  29. J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg grating by layer peeling," IEEE J. Quantum Electron. 37, 165-173 (2001). [CrossRef]
  30. Y. Painchaud and M. Morin, "Iterative method for the design of arbitrary multi-channel fiber Bragg gratings," in OSA Topical Meeting Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP2007), paper BTuB1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited