OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 8407–8416

FDTD approach to optical forces of tightly focused vector beams on metal particles

Jian-Qi Qin, Xi-Lin Wang, Ding Jia, Jing Chen, Ya-Xian Fan, Jianping Ding, and Hui-Tian Wang  »View Author Affiliations


Optics Express, Vol. 17, Issue 10, pp. 8407-8416 (2009)
http://dx.doi.org/10.1364/OE.17.008407


View Full Text Article

Enhanced HTML    Acrobat PDF (422 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an improved FDTD method to calculate the optical forces of tightly focused beams on microscopic metal particles. Comparison study on different kinds of tightly focused beams indicates that trapping efficiency can be altered by adjusting the polarization of the incident field. The results also show the size-dependence of trapping forces exerted on metal particles. Transverse tapping forces produced by different illumination wavelengths are also evaluated. The numeric simulation demonstrates the possibility of trapping moderate-sized metal particles whose radii are comparable to wavelength.

© 2009 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(290.5825) Scattering : Scattering theory

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: February 6, 2009
Revised Manuscript: March 23, 2009
Manuscript Accepted: May 1, 2009
Published: May 4, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Jian-Qi Qin, Xi-Lin Wang, Ding Jia, Jing Chen, Ya-Xian Fan, Jianping Ding, and Hui-Tian Wang, "FDTD approach to optical forces of tightly focused vector beams on metal particles," Opt. Express 17, 8407-8416 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-8407


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  2. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, "Recent Advances in Optical Tweezers," Annu. Rev. Biochem. 77, 205 (2008). [CrossRef] [PubMed]
  3. Q. Zhan, "Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams," J. Opt. A: Pure Appl. Opt. 5, 229-232 (2003). [CrossRef]
  4. S. K. Mohanty, R. S. Verma, and P. K. Gupta, "Trapping and controlled rotation of low-refractive-index particles using dual line optical tweezers," Appl. Phys. B 87,211-215 (2007). [CrossRef]
  5. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, "Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam," Opt. Lett. 32, 1839-1841 (2007). [CrossRef] [PubMed]
  6. S. Yan and B. Yao, "Radiation forces of a highly focused radially polarized beam on spherical particles," Phys. Rev. A 76, 053836.1-6 (2007). [CrossRef]
  7. A. van der Horst and N. R. Forde, "Calibration of dynamic holographic optical tweezers for force measurements on biomaterials," Opt. Express 16, 20987-21003 (2008). [CrossRef] [PubMed]
  8. D. Benito, S. Simpson, and S. Hanna, "FDTD simulation of forces on particles during holographic assembly," Opt. Express 16, 2949-2957 (2008). [CrossRef]
  9. T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, "Forces in optical tweezers with radially and azimuthally polarized trapping beams," Opt. Lett. 33,122-124 (2008). [CrossRef] [PubMed]
  10. S. Sung and Y. Lee, "Trapping of a micro-bubble by non-paraxial Gaussian beam: computation using the FDTD method," Opt. Express 16, 3463-3473 (2008). [CrossRef] [PubMed]
  11. T. Wohland, A. Rosin, and E. Stelzer, "Theoretical determination of the influence of the polarization on forces exerted by optical tweezers," Optik 102, 181-190 (1996).
  12. P. Ke and M. Gu, "Characterization of trapping force on metallic Mie particles," Appl. Opt. 38, 160-167 (1999). [CrossRef]
  13. K. Sasaki, M. Koshioka, H. Misawa, and N. Kitamura, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1991). [CrossRef]
  14. O’Neil and M. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185,139-143 (2000). [CrossRef]
  15. M. Gu and P. Ke, "Depolarization of evanescent waves scattered by laser-trapped gold particles: Effect of particle size," J. Appl. Phys. 88, 5415-5420 (2000). [CrossRef]
  16. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the Optical Trapping Range of Gold Nanoparticles," Nano. Lett. 5, 1937-1941 (2005). [CrossRef]
  17. S. Sato, Y. Harada, and Y. Waseda, "Optical trapping of microscopic metal particles," Opt. Lett. 19, 1807-1809 (1994). [CrossRef] [PubMed]
  18. K. Svoboda and S. M. Block, "Optical trapping of metallic Rayleigh particles," Opt. Lett. 19, 930-932 (1994). [CrossRef] [PubMed]
  19. H. Furukawa and I. Yamaguchi, "Optical trapping of metallic particles by a fixed Gaussian beam," Opt. Lett. 23216-218 (1998). [CrossRef]
  20. Q. Zhan, "Trapping metallic Rayliegh particles with radial polarization," Opt. Express 12, 3377-3382 (2004). [CrossRef] [PubMed]
  21. Y. Seol, A. Carpenter, and T. Perkins, "Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating," Opt Lett. 31, 2429-2431 (2006). [CrossRef] [PubMed]
  22. M. Dienerowitz, M. Mazilu, P. Reece, T. Krauss, and K. Dholakia, "Optical vortex trap for resonant confinement of metal nanoparticles," Opt. Express 16, 4991-4999 (2008). [CrossRef] [PubMed]
  23. A. Taflove and S. Hangess, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House Inc. Norwood, MA, 2005).
  24. K. Kunz and R. Luebbers, the Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, 1993).
  25. W. Challener, I. Sendur, and C. Peng, "Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy material," Opt. Express 11, 3160-3170 (2003). [CrossRef] [PubMed]
  26. B. Richards and E. Wolf, "Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system," Proc. Roy. Soc. A 253, 358-379 (1959). [CrossRef]
  27. A. Vial, A. Grimault, D. Macies, D. Barchiesi, and M. Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited