OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 8447–8460

Plasmonic excitations in metallic nanoparticles: Resonances, dispersion characteristics and near-field patterns

Eugen Tatartschuk, Ekaterina Shamonina, and Laszlo Solymar  »View Author Affiliations


Optics Express, Vol. 17, Issue 10, pp. 8447-8460 (2009)
http://dx.doi.org/10.1364/OE.17.008447


View Full Text Article

Enhanced HTML    Acrobat PDF (2492 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metamaterials acquire their functionality from the structuring of the small building blocks, “artificial atoms”. Our paper provides a study of the resonant behaviour for a variety of metallic nanoparticles in the region of hundreds of THz. Resonant modes for nanorods of rectangular cross section are investigated numerically for different types of excitation and the set of resonant frequencies (fundamental and higher order) are determined for rods of various length. From that the dispersion relationship for surface plasmon-polaritons propagating along the rod is deduced. We analyse resonant-mode near-field distribution of the electric field, including the field lines, to emphasise the underlying physics. Resonant frequencies are also found and field distributions analysed when the rods are combined to form particles of L, U and O shapes. The similarities and differences between those particles, both in the values and in the number of resonances, are discussed. The results of this study may aid the design of nanostructured metamaterials with required properties in the IR and optical domain.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 4, 2009
Revised Manuscript: March 26, 2009
Manuscript Accepted: March 27, 2009
Published: May 5, 2009

Citation
Eugen Tatartschuk, Ekaterina Shamonina, and Laszlo Solymar, "Plasmonic excitations in metallic nanoparticles: Resonances, dispersion characteristics and near-field patterns," Opt. Express 17, 8447-8460 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-8447


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Sommerfeld, "Uber die Fortpflanzung elektrodynamischer Wellen langs eines Drahtes," Ann. Phys. Chem. 303, 233-290 (1899). [CrossRef]
  2. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves in metallic surfaces," J. Opt. Soc. Am. 31, 213-222 (1941). [CrossRef]
  3. W. O. Schumann, "Ausbreitung elektrischer Wellen langs geschichteter und langs kontinuierlich veranderlicher Plasmen, " Z. Naturforsch. A 5, 612-617 (1950).
  4. A. A. Oliner and T. Tamir, "Backward waves on isotropic plasma slabs," J. Appl. Phys. 33, 231-233 (1962). [CrossRef]
  5. E. N. Economou, "Surface plasmas in thin films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  6. D. Sarid, "Long range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981). [CrossRef]
  7. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Field polarization and polarization charge distributions in plasmon resonant nanoparticles," New J. Phys. 2, 271-279 (2000). [CrossRef]
  8. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Non-regularly shaped plasmon resonant nanoparticle as localised light source for near-field microscopy," J. Microscopy 202, 60-65 (2001). [CrossRef]
  9. P. Berini, "Plasmon-polariton modes guided by a metal film of finite width," Opt. Lett. 24, 1011-1013 (1999). [CrossRef]
  10. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, "Characterization of long-range surface-plasmon-polariton waveguides," J. Appl. Phys. 98, 043109-043120 (2005). [CrossRef]
  11. S. J. Al-Bader, "Optical transmission on metallic wires-fundamental modes," IEEE J. Quantum Electron. 28, 325-329 (2004). [CrossRef]
  12. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  13. E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Imaging, compression and Poynting vector streamlines with negative permittivity materials," Electron. Lett. 37, 1243-1244 (2001). [CrossRef]
  14. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004). [CrossRef] [PubMed]
  15. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404-137407 (2005). [CrossRef] [PubMed]
  16. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  17. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007). [CrossRef]
  18. V. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires and left-handed materials," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002). [CrossRef]
  19. L. V. Panina, A. N. Grigorenko, and D. P. Makhnovskiy, "Optomagnetic composite medium with conducting nanoelements," Phys. Rev. B 66, 155411-155427 (2002). [CrossRef]
  20. V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, "Resonant light interaction with plasmonic nanowire systems," J. Opt. A: Pure Appl. Opt. 7, 32-37 (2005). [CrossRef]
  21. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95. 203901-203904 (2005). [CrossRef] [PubMed]
  22. M. Wegener, J. L. Garcia-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, "Toy model for plasmonic metamaterial resonances coupled to two-level system gain," Opt. Express 16, 19785-19798 (2008). [CrossRef] [PubMed]
  23. J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, "Fabrication of crescent-shaped optical antennas," Adv. Mater. 17, 2131-2134 (2005). [CrossRef]
  24. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, amd F. J. García de Abajo, "Optical Properties of Gold Nanorings," Phys. Rev. Lett. 90, 057401-057404 (2003). [CrossRef] [PubMed]
  25. K. Busch, G von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep. 444, 101-202 (2007). [CrossRef]
  26. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photonics 1, 41-48 (2007). [CrossRef]
  27. A. Boltasseva and V. M. Shalaev, "Fabrication of optical negative-index metamaterials: Recent advances and outlook," Metamaterials 2, 1-17 (2008). [CrossRef]
  28. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Szassen, J. Kuhl, F. Lederer, and H. Giessen, "Resonances of split-ring-resonator metamaterials in the near infrared," Appl. Phys. B 84, 219-227 (2006). [CrossRef]
  29. A. Ishikawa, T. Tanaka, and S. Kawata, "Negative magnetic permeability in the visible light region," Phys. Rev. Lett. 95, 273401-273404 (2005). [CrossRef]
  30. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring-resonators at optical frequencies," Phys. Rev. Lett. 95, 223902-223905 (2005). [CrossRef] [PubMed]
  31. R. Marques and M. Freire, "On the usefulness of split ring resonators for magnetic metamaterial design at infrared and optical frequencies," IEEE MELECON, Benaldamena (Malaga), Spain, 222-224 (2005).
  32. S. Tretyakov, "On geometrical scaling of split-ring and double bar resonators at optical frequencies," Metamaterials 1, 40-43 (2007). [CrossRef]
  33. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys Rev. B 6, 4370-4379 (1972). [CrossRef]
  34. H. Jasik, ed., Antenna Engineering Handbook (McGraw-Hill, 1961).
  35. M. Kafesaki, T. Koschny, R. S. Penciu, T. F. Gundogdu, and E. N. Economou, "Experimental demonstration of negative magnetic permeability in the far infrared frequency region," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited