OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 8467–8475

Manipulating the loss in electromagnetic cloaks for perfect wave absorption

Christos Argyropoulos, Efthymios Kallos, Yan Zhao, and Yang Hao  »View Author Affiliations

Optics Express, Vol. 17, Issue 10, pp. 8467-8475 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (218 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine several ways to manipulate the loss in electromagnetic cloaks, based on transformation electromagnetics. It is found that, by utilizing inherent electric and magnetic losses of metamaterials, perfect wave absorption can be achieved based on several popular designs of electromagnetic cloaks. A practical implementation of the absorber, consisting of ten discrete layers of metamaterials, is proposed. The new devices demonstrate super-absorptivity over a moderate wideband range, suitable for both microwave and optical applications. It is corroborated that the device is functional with a subwavelength thickness and, hence, advantageous compared to the conventional absorbers.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Physical Optics

Original Manuscript: March 2, 2009
Revised Manuscript: May 1, 2009
Manuscript Accepted: May 1, 2009
Published: May 5, 2009

Christos Argyropoulos, Efthymios Kallos, Yan Zhao, and Yang Hao, "Manipulating the loss in electromagnetic cloaks for perfect wave absorption," Opt. Express 17, 8467-8475 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 7779 (2001). [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977980 (2006). [CrossRef]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  5. D. R. Smith, and J. B. Pendry, "Homogenization of metamaterials by field averaging (invited paper)," J. Opt. Soc. Am. B 23, 391-403 (2006). [CrossRef]
  6. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305, 788 - 792 (2004). [CrossRef] [PubMed]
  7. V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005). [CrossRef] [PubMed]
  8. M. Yan, Z. Ruan, and M. Qiu, "Scattering characteristics of simplified cylindrical invisibility cloaks," Opt. Express 15, 17772-17782 (2007). [CrossRef] [PubMed]
  9. S. A. Cummer, B. -I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006). [CrossRef]
  10. H. Chen, B. -I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007). [CrossRef] [PubMed]
  11. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, "Ideal Cylindrical Cloak: Perfect but Sensitive to Tiny Perturbations," Phys. Rev. Lett. 99, 113903 (2007). [CrossRef] [PubMed]
  12. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, andW. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett. 100, 207402 (2008). [CrossRef] [PubMed]
  13. F. Bilotti, L. Nucci, and L. Vegni, "An SRR based microwave absorber," Microw. Opt. Tech. Lett. 48, 2171-2175 (2006). [CrossRef]
  14. Y. Zou, L. Jiang, S. Wen, W. Shu, Y. Qing, Z. Tang, H. Luo, and D. Fan, "Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials," Appl. Phys. Lett. 93, 261115 (2008). [CrossRef]
  15. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, andW. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express 16, 7181-7188 (2008). [CrossRef] [PubMed]
  16. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78, 241103 (2008). [CrossRef]
  17. J. Ng, H. Chen, and C. T. Chan, "Metamaterial frequency-selective superabsorber," Opt. Lett. 34, 644-646 (2009). [CrossRef] [PubMed]
  18. Y. Zhao, C. Argyropoulos, and Y. Hao, "Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures," Opt. Express 16, 6717-6730 (2008). [CrossRef] [PubMed]
  19. C. Argyropoulos, Y. Zhao, and Y. Hao, "A Radially-Dependent Dispersive Finite-Difference Time-Domain Method for the Evaluation of Electromagnetic Cloaks," IEEE Trans. Antennas Propag. (to be published), ArXiv.org:0805.2050v1, (2009). [CrossRef]
  20. N. A. Zharova, I. V. Shadrivov, and Y. S. Kivshar, "Inside-out electromagnetic cloaking," Opt. Express 16, 4615-4620 (2008). [CrossRef] [PubMed]
  21. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Lett. 91, 111105 (2007). [CrossRef]
  22. J. B. Andersen and A. Frandsen, "Absorption efficiency of receiving antennas," IEEE Trans. Antennas Propag. 53, 2843-2849 (2005). [CrossRef]
  23. J. S. McGuirk and P. J. Collins, "Controlling the transmitted field into a cylindrical cloaks hidden region," Opt. Express 16, 17560-17573 (2008). [CrossRef] [PubMed]
  24. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics 1, 224-227 (2007). [CrossRef]
  25. J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, "Ohmic loss in frequency-selective surfaces," J. Appl. Phys. 93, 5346 (2003). [CrossRef]
  26. H. Tamura, "Microwave dielectric losses caused by lattice defects," J. Eur. Ceram. Soc. 26, 1775 (2006). [CrossRef]
  27. S. A. Cummer, B. -I. Popa, and T. H. Hand, "Q-Based Design Equations and Loss Limits for Resonant Metamaterials and Experimental Validation," IEEE Trans. Antennas Propag. 56, 127 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited