OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 8513–8524

Systematic surface waves analysis at the interfaces of composite DNG/SNG media

D. L. Sounas and N. V. Kantartzis  »View Author Affiliations


Optics Express, Vol. 17, Issue 10, pp. 8513-8524 (2009)
http://dx.doi.org/10.1364/OE.17.008513


View Full Text Article

Enhanced HTML    Acrobat PDF (290 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The efficient analysis of practical metamaterial slabs, formed by networks of diverse split-ring resonators, is presented in this paper, concerning their competence to guide surface waves. Dispersion curves of the supported modes are consistently derived through closed-form expressions with average constitutive parameters of the slab’s medium, estimated in terms of finite difference time domain (FDTD) simulations of the metamaterial’s unit cell. Then, the resonant frequencies in the first Brillouin zone are computed via a rigorous FDTD model of the structure’s unit cell and results are elaborately collated with their theoretical counterparts. The comparison reveals the lack of the analytical method to provide relatively correct outcomes for high Bloch numbers due to the nonlocal phenomena which become dominant near the Brillouin zone edge.

© 2009 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(050.2065) Diffraction and gratings : Effective medium theory
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 11, 2009
Revised Manuscript: May 1, 2009
Manuscript Accepted: May 3, 2009
Published: May 5, 2009

Citation
D. L. Sounas and N. V. Kantartzis, "Systematic surface waves analysis at the interfaces of composite DNG/SNG media," Opt. Express 17, 8513-8524 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-8513


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  3. R. Marques, F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial designtheory and experiments," IEEE Trans. Antennas Propag. 51, 2572-2581 (2003). [CrossRef]
  4. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left handed materials composed of only S-shaped resonators," Phys. Rev. E 70, 057605-1-057605-4 (2004). [CrossRef]
  5. A. Grbic and G. V. Eleftheriades, "Periodic analysis of a 2-D negative refractive index transmission line structure," IEEE Trans. Antennas Propag. 51, 2604-2611 (2003). [CrossRef]
  6. C. Caloz, A. Sanada, and T. Itoh, "A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Trans. Microwave Theory Tech. 52, 980-992 (2004). [CrossRef]
  7. A. Alu and N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), doublenegative (DNG), and/or double-positive (DPS) layers," IEEE Trans. Microwave Theory Tech. 52, 199-210 (2004). [CrossRef]
  8. P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Fundamental modal properties of surface waves on metamaterial grounded slabs," IEEE Trans. Microwave Theory Tech. 53, 1431-1442 (2005). [CrossRef]
  9. N. V. Kantartzis, D. L. Sounas, C. S. Antonopoulos, and T. D. Tsiboukis, "A wideband ADI-FDTD algorithm for the design of double negative metamaterial-based waveguides and antenna substrates," IEEE Trans. Magn. 43, 1329-1332 (2007). [CrossRef]
  10. P. Ikonen and S. Tretyakov, "Determination of generalized permeability function and field energy density in artificial magnetics using the equivalent-circuit method," IEEE Trans. Microwave Theory Tech. 55, 92-99 (2007). [CrossRef]
  11. F. Bilotti, A. Alu, and L. Vegni, "Design of miniaturized metamaterial patch Antennas with μ-negative loading," IEEE Trans. Antennas Propag. 56, 1640-1647 (2008). [CrossRef]
  12. A. Erentok and R. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Trans. Antennas Propag. 56, 691-707 (2008). [CrossRef]
  13. B. Edwards, A. Alu, M. Young, M. Silveirinha, and N. Engheta, "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide," Phys. Rev. Lett. 100, 033903-1-033903-4 (2008). [CrossRef]
  14. M. Antoniades and G. Eleftheriades, "A CPS leaky-wave antenna with reduced beam squinting using NRI-TL metamaterials," IEEE Trans. Antennas Propag. 56, 708-721 (2008). [CrossRef]
  15. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  16. R. W. Ziolkowski, "Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs," Opt. Express 11, 662-681 (2003). [CrossRef] [PubMed]
  17. F. Mesa, M. J. Freire, R. Marques, and J. D. Baena, "Three-dimensional superresolution in metamaterial slab lenses: Experiment and theory," Phys. Rev. B 72, 235117-1-235117-6 (2005). [CrossRef]
  18. K. Aydin, I. Bulu, and E. Ozbay, "Focusing of electromagnetic waves by a left-handed metamaterial flat lens," Opt. Express 13, 8753-8759 (2005). [CrossRef] [PubMed]
  19. K. Aydin and E. Ozbay, "Negative refraction through an impedancematched left-handed metamaterial slab," J. Opt. Soc. Am. B 23, 415-418 (2006). [CrossRef]
  20. D. L. Sounas, N. V. Kantartzis, and T. D. Tsiboukis, "Temporal characteristics of resonant surface polaritons in superlensing planar double-negative slabs: Development of analytical schemes and numerical models," Phys. Rev. E 76, 046606-1-046606-12 (2007). [CrossRef]
  21. G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, "Influence of losses on the superresolution performances of an impedance-matched negative-index material," J. Opt. Soc. Am. B 25, 236-246 (2008). [CrossRef]
  22. P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using atransmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110-1-113110-4 (2006). [CrossRef]
  23. M. Silveirinha, P. A. Belov, and C. R. Simovski, "Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods," Opt. Lett. 33, 1726-1728 (2008). [CrossRef] [PubMed]
  24. R. Ruppin, "Surface polaritons of a left-handed material slab," J. Phys.: Condens. Matter 13, 1811-1819 (2001). [CrossRef]
  25. B. I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, "Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability," J. Appl. Phys. 93, 9386-9388 (2003). [CrossRef]
  26. I. Shadrivov, R. Ziolkowski, A. Zharov, and Y. Kivshar, "Excitation of guided waves in layered structures with negative refraction," Opt. Express 13, 481-492 (2005). [CrossRef] [PubMed]
  27. J. N. Gollub, D. R. Smith, D. C. Vier, T. Perram, and J. J. Mock, "Experimental characterization of magnetic resonance plasmons on metamaterials with negative permeability," Phys. Rev. B 71, 195402-1-195402-7 (2005). [CrossRef]
  28. B. I. Popa and S. A. Cummer, "Direct measurment of evanescent wave enhancement inside passive metamaterials," Phys. Rev. E 73, 016617-1-016617-5 (2006). [CrossRef]
  29. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104-1-195104-5 (2002). [CrossRef]
  30. X. Chen, T.M. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E 70,016608-1-016608-7 (2004). [CrossRef]
  31. D. R. Smith and J. B. Pendry, "Homogenization of metamaterials by field averaging," J. Opt. Soc. Am. B 23, 391-403 (2006). [CrossRef]
  32. R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, "Description of electromagnetic behaviors in artificial metamaterials based on effective medium theory," Phys. Rev. E 76, 026606-1-026606-8 (2007). [CrossRef]
  33. C. R. Simovski and S. A. Tretyakov, "Local constitutive parameters of metamaterials from an effective-medium perspective," Phys. Rev. B 75, 195111-1-195111-10 (2007). [CrossRef]
  34. C. R. Simovski, "Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices," Metamaterials 1, 62-80 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited