OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 8558–8566

1.3 μm-wavelength phase-locked VCSEL arrays incorporating patterned tunnel junction

Lukas Mutter, Vladimir Iakovlev, Andrei Caliman, Alexandru Mereuta, Alexei Sirbu, and Eli Kapon  »View Author Affiliations

Optics Express, Vol. 17, Issue 10, pp. 8558-8566 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (407 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the fabrication and the performance of phase-locked VCSEL arrays emitting near 1310 nm wavelength. The arrays were fabricated using double wafer fusion by patterning a tunnel junction layer, which serves to define the individual single mode array elements. Phase-locking in both one-dimensional and two-dimensional array configurations was confirmed by means of far field and spectral measurements as well as theoretical modeling. CW output powers of more than 12 mW were achieved.

© 2009 Optical Society of America

OCIS Codes
(140.3290) Lasers and laser optics : Laser arrays
(140.3325) Lasers and laser optics : Laser coupling
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 18, 2009
Revised Manuscript: April 16, 2009
Manuscript Accepted: April 28, 2009
Published: May 6, 2009

Lukas Mutter, Vladimir Iakovlev, Andrei Caliman, Alexandru Mereuta, Alexei Sirbu, and Eli Kapon, "1.3μm-wavelength phase-locked VCSEL arrays incorporating patterned tunnel junction," Opt. Express 17, 8558-8566 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, "High-power single-mode verticalcavity surface-emitting lasers with triangular holey structure," Appl. Phys. Lett. 85, 5161-5163 (2004). [CrossRef]
  2. M. W. Wiemer, R. I. Aldaz, D. A. B. Miller, and J. S. Harris, "A Single Transverse-Mode Monolithically Integrated Long Vertical-Cavity Surface-Emitting Laser," IEEE Photon. Technol. Lett. 17, 1366-1368 (2005). [CrossRef]
  3. A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C. A. Berseth, P. Royo, A. Syrbu, and E. Kapon, "CavityMode - Gain Peak Tradeoff for 1320 nmWafer-Fused VCSELs with 3mWSingle-Mode Emission Power and 10Gb/s Modulation Speed up to 70◦C," IEEE Photon. Technol. Lett. 19, 121-123 (2007). [CrossRef]
  4. I. Kardosh, F. Demaria, F. Rinaldi, S. Menzel, and R. Michalzik, "High-Power Single Transverse Mode Vertical-Cavity Surface-Emitting Lasers With Monolithically Integrated Curved Dielectric Mirrors," IEEE Photon. Technol. Lett. 20, 2084-2086 (2008). [CrossRef]
  5. M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unhold, and K. J. Ebeling, "High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays," IEEE J. Sel. Top. Quantum Electron. 5, 495-502 (1999). [CrossRef]
  6. R. Shau, M. Ortsiefer, J. Rosskopf, G. Böhm, F. Köhler, and M. C. Amann, "Vertical-cavity surface-emitting laser diodes at 1.55μm with large output power and high operation temperature," Electron. Lett. 37, 1295-1296 (2001). [CrossRef]
  7. M. Achtenhagen, A. Hardy, and E. Kapon, "Mode discrimination in vertical-cavity surface-emitting lasers including Bragg reflectors and limiting apertures," Opt. Eng. 44, 104202 1-6 (2005). [CrossRef]
  8. M. Orenstein, E. Kapon, N. G. Stoffel, J. P. Harbison, L. T. Florenz, and J. Wullert, "Two-dimensional phaselocked arrays of vertical-cavity semiconductor lasers by mirror reflectivity modulation," Appl. Phys. Lett. 58, 804-806 (1991). [CrossRef]
  9. M. Orenstein, E. Kapon, J. P. Harbison, L. T. Florenz, and N. G. Stoffel, "Large two-dimensional arrays of phase-locked vertical cavity surface emitting lasers," Appl. Phys. Lett. 60, 1335-1337 (1992). [CrossRef]
  10. H. J. Yoo, A. Scherer, J. P. Harbison, L. T. Florenz, E. G. Paek, B. P. Van der Gaag, J. R. Hayes, A. Von Lehmen, E. Kapon, and Y. S. Kwon, "Fabrication of a two-dimensional phased array of vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 56, 1198-1200 (1990). [CrossRef]
  11. J. J. Raftery, A. C. Lehman, A. J. Danner, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, "In-phase evanescent coupling of two-dimensional arrays of defect cavities in photonic crystal vertical cavity surface emitting lasers," Appl. Phys. Lett. 89, 081119 1-3 (2006). [CrossRef]
  12. D. G. Deppe, J. P. van der Ziel, N. Chand, G. J. Zydzik, and S. N. G. Chu, "Phase-coupled two-dimensional AlxGa1−xAs-GaAs vertical-cavity surface-emitting laser array," Appl. Phys. Lett. 56, 2089-2091 (1990). [CrossRef]
  13. A.C. Lehman and K. D. Choquette, "One- and Two- Dimensional Coherently Coupled Implant-Defined Vertical-Cavity Laser Arrays," IEEE Photon. Technol. Lett. 19, 1421-1423 (2007). [CrossRef]
  14. A. C. Lehman, D. F. Siriani, and K. D. Choquette, "Two-dimensional electronic beam-steering with implantdefined coherent VCSEL arrays," Electron. Lett. 43, 1202-1203 (2007). [CrossRef]
  15. L. D. A. Lundeberg and E. Kapon, "Mode switching and beam steering in photonic crystal heterostructures implemented with vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 90, 241115 1-3 (2007). [CrossRef]
  16. A. Syrbu and E. Kapon, "Long-Wavelength VCSELs Power - efficient answer," Nature Photon.,  3, 27-29 (2009). [CrossRef]
  17. A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C. A. Berseth, E. Deichsel, and E. Kapon, "1.5μm VCSEL structure optimized for high-power and high-temperatrue operation," J. Crystal Growth 272, 520-525 (2004). [CrossRef]
  18. M. Arzberger, M. Lohner, G. Böhm, and M. C. Amann, "Low-resistivity p-side contacts for InP-based devices using buried InGaAs tunnel junction," Electron. Lett. 36, 87-88 (2000). [CrossRef]
  19. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, Engelwood, Colorado, Third Edition, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited