OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 8657–8668

Integration of a photonic crystal polarization beam splitter and waveguide bend

Wanhua Zheng, Mingxin Xing, Gang Ren, Steven G. Johnson, Wenjun Zhou, Wei Chen, and Lianghui Chen  »View Author Affiliations


Optics Express, Vol. 17, Issue 10, pp. 8657-8668 (2009)
http://dx.doi.org/10.1364/OE.17.008657


View Full Text Article

Enhanced HTML    Acrobat PDF (841 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we present the design of an integrated photonic-crystal polarization beam splitter (PC-PBS) and a low-loss photonic-crystal 60° waveguide bend. Firstly, the modal properties of the PC-PBS and the mechanism of the low-loss waveguide bend are investigated by the two-dimensional finite-difference time-domain (FDTD) method, and then the integration of the two devices is studied. It shows that, although the individual devices perform well separately, the performance of the integrated circuit is poor due to the multi-mode property of the PC-PBS. By introducing deformed airhole structures, a single-mode PC-PBS is proposed, which significantly enhance the performance of the circuit with the extinction ratios remaining above 20dB for both transverse-electric (TE) and transverse-magnetic (TM) polarizations. Both the specific result and the general idea of integration design are promising in the photonic crystal integrated circuits in the future.

© 2009 Optical Society of America

OCIS Codes
(230.1150) Optical devices : All-optical devices
(230.3990) Optical devices : Micro-optical devices
(250.5300) Optoelectronics : Photonic integrated circuits
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Photonic Crystals

History
Original Manuscript: November 30, 2008
Revised Manuscript: March 8, 2009
Manuscript Accepted: May 1, 2009
Published: May 8, 2009

Citation
Wanhua Zheng, Mingxin Xing, Gang Ren, Steven G. Johnson, Wenjun Zhou, Wei Chen, and Lianghui Chen, "Integration of a photonic crystal polarization beam splitter and waveguide bend," Opt. Express 17, 8657-8668 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-8657


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, second edition (Princeton Univ. Press, 2008).
  3. K. Nozaki, H. Watanabe, and T. Baba, "Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction," Appl. Phys. Lett. 92, 021108 (2008). [CrossRef]
  4. W. H. Zheng, G. Ren, X.T. Ma, X. H. Cai, L.H. Chen, K. Nozaki and T. Baba, "Dipole mode photonic crystal point defect laser on InGaAsP/InP," J. Crystal Growth 292, 341-344 (2006). [CrossRef]
  5. Z. Qiang, W. Zhou, and R.A. Soref, "Optical add-drop filters based on photonic crystal ring resonators," Opt. Express 15, 1823-1831 (2007). [CrossRef] [PubMed]
  6. P. Pottier, S. Mastroiacovo, and R. M. De La Rue, "Power and polarization beam-splitters, mirrors, and integrated interferometers based on air-hole photonic crystals and lateral large index-contrast waveguides," Opt. Express 14, 5617-5633 (2006). [CrossRef] [PubMed]
  7. Y. Watanabe, N. Ikeda, Y. Sugimoto, Y. Takata, Y. Kitagawa, A. Mizutani, N. Ozaki, and K. Asakawa, "Topology optimization of waveguide bends with wide, flat bandwidth in air-bridge-type photonic crystal slabs," J. Appl. Phys. 101, 113108 (2007). [CrossRef]
  8. L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, "Mach-Zehnder Interferometer Polarization Splitter in InGaAsP/LnP," IEEE Photon. Technol. Lett. 6, 402-405 (1994). [CrossRef]
  9. P. K. Wei and W. S. Wang, "A TE-TM Mode Splitter on Lithium Niobate Using Ti, Ni, and MgO Diffusions," IEEE Photon. Technol. Lett. 6, 245-248 (1994). [CrossRef]
  10. J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, "Design and Fabrication of a Significantly Shortened Multimode Interference Coupler for Polarization Splitter Application," IEEE Photon. Technol. Lett. 15, 72-74 (2003). [CrossRef]
  11. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, "Design of a Compact Photonic-Crystal-Based Polarizing Beam Splitter," IEEE Photon Techol. Lett. 17, 1435-1437 (2005). [CrossRef]
  12. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, C. J. Summers, "Polarization beam splitter based on a photonic crystal heterostructure," Opt. Lett. 31, 3104-3106 (2006). [CrossRef] [PubMed]
  13. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O'Faolain, and T. F. Krauss, "Self-collimating photonic crystal polarization beam splitter," Opt. Lett. 32, 530-532 (2007). [CrossRef] [PubMed]
  14. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High Transmission through Sharp Bends in Photonic Crystal Waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  15. A. Chutinan, M. Okano, and S. Noda, "Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 80, 1698-1700 (2002). [CrossRef]
  16. S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré and U. Oesterle, "Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal," Appl. Phys. Lett. 79, 2514-2516 (2001). [CrossRef]
  17. B. Miao, C. Chen, S. Shi, J. Murakowski, and D. W. Prather, "High-Efficiency Broad-Band Transmission Through a Double-60°Bend in a Planar Photonic Crystal Single-Line Defect Waveguide," IEEE Photon. Technol. Lett. 16, 2469-2471 (2004). [CrossRef]
  18. P. I. Borel, A. Harpøth, L. H. Frandsen, M. Kristensen, "Topology optimization and fabrication of photonic crystal structures," Optics Express 12, 1996-2001 (2004). [CrossRef] [PubMed]
  19. N. Moll and G.-L. Bona, "Bend design for the low-group-velocity mode in photonic crystal-slab waveguides," Appl. Phys. Lett. 85, 4322-4324 (2004). [CrossRef]
  20. H. Benisty C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, Richard M. De La Rue, R. Houdré, U. Oesterle, C. Jouanin, and D. Cassagne, "Optical and confinement properties of two-dimensional photonic crystals," J. Lightw. Technol. 17, 2063-2077, (1999). [CrossRef]
  21. S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides," IEEE J. Quantum Electron. 38, 47-53 (2002). [CrossRef]
  22. A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, "Guiding mechanisms in dielectric-core photonic-crystal optical waveguides," Phys. Rev. B 64, 033308 (2001). [CrossRef]
  23. P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, Y. X. Zhuang and M. Kristensen, Opt. Express 11, 1757 (2003). [CrossRef] [PubMed]
  24. G. Ren, W. H. Zheng, Y. J. Zhang, K. Wang, X. Y. Du, M. X. Xing, and L. H. Chen, "Mode Analysis and Design of a Low-Loss Photonic Crystal 60 Waveguide Bend," IEEE J. Lightw. Technol. 26, 2215-2218, (2008). [CrossRef]
  25. M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B. 64, 075313 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited