OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 8676–8684

Backscattering and disorder limits in slow light photonic crystal waveguides

Alexander Petrov, Michael Krause, and Manfred Eich  »View Author Affiliations


Optics Express, Vol. 17, Issue 10, pp. 8676-8684 (2009)
http://dx.doi.org/10.1364/OE.17.008676


View Full Text Article

Enhanced HTML    Acrobat PDF (417 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is known that slow light propagation in disordered photonic crystal channel waveguides leads to backscattering and localization phenomena. The knowledge of the reflection of a slow light mode at a single disorder defect of the periodical structure can help to estimate the backscattering intensity and the localization length. Here, this Bloch-mode reflection is calculated in a simplified slow light waveguide using an eigenmode-expansion approach. We show that by properly engineering the waveguide, backscattering can be significantly reduced while maintaining the same low group velocity. A strong effect of the mode’s anticrossing taking place in photonic crystal line-defects is demonstrated on backscattering. The localization length of slow light waveguides is estimated, which provides fundamental limits for the applicability of slow light waveguides.

© 2009 Optical Society of America

OCIS Codes
(290.1350) Scattering : Backscattering
(290.4210) Scattering : Multiple scattering
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: March 23, 2009
Revised Manuscript: May 1, 2009
Manuscript Accepted: May 1, 2009
Published: May 8, 2009

Citation
Alexander Petrov, Michael Krause, and Manfred Eich, "Backscattering and disorder limits in slow light photonic crystal waveguides," Opt. Express 17, 8676-8684 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-8676


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Baba, "Slow light in photonic crystals," Nat. Photonics 2, 465 (2008). [CrossRef]
  2. T. F. Krauss, "Slow light in photonic crystal waveguides," J. Phys. D 40, 2666-2670 (2007). [CrossRef]
  3. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 8725, 253902 (2001). [CrossRef]
  4. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis," J. Opt. Soc. Am. B 22, 1062-1074 (2005). [CrossRef]
  5. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, "Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide," Opt. Express 16, 9245-9253 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-9245 [CrossRef] [PubMed]
  6. M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002). [CrossRef]
  7. Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105 (2005). [CrossRef]
  8. J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, "High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide," Opt. Express 16, 4177-4191 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-4177 [CrossRef] [PubMed]
  9. K. Hosomi and T. Katsuyama, "A dispersion compensator using coupled defects in a photonic crystal," IEEE J. Quantum Electron. 38, 825-829 (2002). [CrossRef]
  10. A. Y. Petrov and M. Eich, "Dispersion compensation with photonic crystal line-defect waveguides," IEEE J. Sel. Areas Commun. 23, 1396-1401 (2005). [CrossRef]
  11. A. Y. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866-4868 (2004). [CrossRef]
  12. J. Li, T. P. White, L. O'Faolain, A. Gomez-Iglesias, and T. F. Krauss, "Systematic design of flat band slow light in photonic crystal waveguides," Opt. Express 16, 6227-6232 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6227 [CrossRef] [PubMed]
  13. J. E. McMillan, X. D. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, "Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides," Opt. Lett. 31, 1235-1237 (2006). [CrossRef] [PubMed]
  14. M. Lipson, "Guiding, modulating, and emitting light on silicon-challenges and opportunities," J. Lightwave Technol. 23, 4222-4238 (2005). [CrossRef]
  15. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005). [CrossRef]
  16. L. O'Faolain, T. P. White, D. O'Brien, X. D. Yuan, M. D. Settle, and T. F. Krauss, "Dependence of extrinsic loss on group velocity in photonic crystal waveguides," Opt. Express 15, 13129-13138 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-20-13129 [CrossRef] [PubMed]
  17. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, "Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity," Phys. Rev. Lett. 94, 033903 (2005). [CrossRef] [PubMed]
  18. D. Gerace and L. C. Andreani, "Light-matter interaction in photonic crystal slabs," Phys. Status Solidi B 244, 3528-3539 (2007). [CrossRef]
  19. S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, "Roughness losses and volume-current methods in photonic-crystal waveguides," Appl. Phys. B 81, 283-293 (2005). [CrossRef]
  20. S. Mookherjea and A. Oh, "Effect of disorder on slow light velocity in optical slow-wave structures," Opt. Lett. 32, 289-291 (2007). [CrossRef] [PubMed]
  21. S. Mookherjea, J. S. Park, S. H. Yang, and P. R. Bandaru, "Localization in silicon nanophotonic slow-light waveguides," Nat. Photonics 2, 90-93 (2008). [CrossRef]
  22. J. Topolancik, B. Ilic, and F. Vollmer, "Experimental observation of strong photon localization in disordered photonic crystal waveguides," Phys. Rev. Lett. 99, 253901 (2007). [CrossRef]
  23. R. J. Engelen, D. Mori, T. Baba, and L. Kuipers, "Two regimes of slow-light losses revealed by adiabatic reduction of group velocity," Phys. Rev. B 101, 103901 (2008). [CrossRef]
  24. Z. Q. Zhang, "Light amplification and localization in randomly layered media with gain," Phys. Rev. B 52, 7960-7964 (1995). [CrossRef]
  25. L. C. Andreani, D. Gerace, and M. Agio, "Gap maps, diffraction losses, and exciton-polaritons in photonic crystal slabs," Photonics Nanostruct. Fundam. Appl. 2, 103-110 (2004). [CrossRef]
  26. J. G. Pedersen, S. Xiao, and N. A. Mortensen, "Limits of slow light in photonic crystals," Phys. Rev. B 78, 153101 (2008). [CrossRef]
  27. J. Jagerska, N. Le Thomas, V. Zabelin, R. Houdre, W. Bogaerts, P. Dumon, and R. Baets, "Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides," Opt. Lett. 34, 359-361 (2009). [CrossRef] [PubMed]
  28. C. Ferrari, F. Morichetti, and A. Melloni, "Disorder in coupled-resonator optical waveguides," J. Opt. Soc. Am. A 26, pp. 858-866 (2009). [CrossRef]
  29. I. Giuntoni, M. Krause, H. Renner, J. Bruns, A. a. B. E. Gajda, and K. Petermann, "Numerical survey on Bragg reflectors in silicon-on-insulator waveguides," in Proceedings of IEEE 5th International Conference on Group IV Photonics, Sorrento, Italy, 17-19 September (IEEE, 2008) pp. 285-287.
  30. Available at camfr.sourceforge.net.
  31. P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron. 33, 327-341 (2001). [CrossRef]
  32. D. Gerace and L. C. Andreani, "Low-loss guided modes in photonic crystal waveguides," Opt. Express 13, 4939-4951 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-4939 [CrossRef] [PubMed]
  33. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, pp. 711-713 (1999). [CrossRef]
  34. S. Mookherjea and A. Yariv, "Coupled resonator optical waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 448-456 (2002). [CrossRef]
  35. D. O'Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, "Coupled photonic crystal heterostructure nanocavities," Opt. Express 15, pp. 1228-1233 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-1228 [CrossRef] [PubMed]
  36. T. Sondergaard and K. H. Dridi, "Energy flow in photonic crystal waveguides," Phys. Rev. B 61, 15688-15696 (2000). [CrossRef]
  37. M. F. Yanik and S. H. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004). [CrossRef] [PubMed]
  38. D. Gerace and L. C. Andreani, "Disorder-induced losses in photonic crystal waveguides with line defects," Opt. Lett. 29, 1897-1899 (2004). [CrossRef] [PubMed]
  39. S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2927 [CrossRef] [PubMed]
  40. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, "Nonlinear and adiabatic control of high-Q photonic crystal nanocavities," Opt. Express 15, pp. 17458-17481 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17458 [CrossRef] [PubMed]
  41. J. H. Wülbern, A. Petrov, and M. Eich, "Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator," Opt. Express 17, 304-313 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-1-304 [CrossRef] [PubMed]
  42. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited