OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 11 — May. 25, 2009
  • pp: 8830–8842

Closure of the stop-band in photonic wire Bragg gratings

M. Gnan, W. C. L. Hopman, G. Bellanca, R. M. de Ridder, R. M. De La Rue, and P. Bassi  »View Author Affiliations

Optics Express, Vol. 17, Issue 11, pp. 8830-8842 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (627 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photonic Wire Bragg Gratings, made by periodic insertion of lateral rectangular recesses into photonic wires in silicon-on-insulator, can provide large reflectivity with short device lengths because of their large index contrast. This type of design shows a counter-intuitive behaviour, as we demonstrate — using experimental and numerical data — that it can have low or null reflectance, even for large indentation values. We provide physical insight into this phenomenon by developing a model based on Bloch mode theory, and are able to find an analytical expression for the frequency at which the grating does not sustain the stop-band. Finally we demonstrate that the stop-band closing effect is a general phenomenon that may occur in various types of periodic device that can be modeled as transmission line structures.

© 2009 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

Original Manuscript: February 17, 2009
Revised Manuscript: May 2, 2009
Manuscript Accepted: May 4, 2009
Published: May 12, 2009

M. Gnan, W. C. L. Hopman, G. Bellanca, R. M. de Ridder, R. M. De La Rue, and P. Bassi, "Closure of the stop-band in photonic wire Bragg gratings," Opt. Express 17, 8830-8842 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Lipson, "Guiding, modulating, and emitting light on Silicon — Challenges and opportunities," J. Lightwave Technol. 23, 4222-4238 (2005). [CrossRef]
  2. B. Jalali and S. Fathpour, "Silicon photonics," J. Lightwave Technol. 24, 4600-4615 (2006). [CrossRef]
  3. S. Noda, "Recent progresses and future prospects of two- and three-dimensional photonic crystals," J. Lightwave Technol. 24, 4554-4567 (2006). [CrossRef]
  4. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and D. Peyrade, "Ultra-high Q/V Fabry-Perot microcavity on SOI substrate," Opt. Express 15, 16090-16096 (2007). [CrossRef] [PubMed]
  5. A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, "Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI)," Opt. Express 16, 12084-12089 (2008). [CrossRef] [PubMed]
  6. M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. De La Rue, "Modelling of photonic wire Bragg gratings," Opt. Quantum Electron. 38, 133-148 (2006). [CrossRef]
  7. A. S. Jugessur, J. Dou, S. Aitchison, R. M. De La Rue, and M. Gnan, "A photonic nano-Bragg grating device integrated with microfluidic channels for bio-sensing applications," Microelectron. Eng.(in press, 2009). [CrossRef]
  8. P. Yeh and A. Yariv, Optical Waves in Crystals, (Wiley, 1984).
  9. D. M. Atkin, P. S. J. Russell, T. A. Birks, and P. J. Roberts, "Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure," J. Mod. Opt. 43, 1035-1053 (1996). [CrossRef]
  10. F. Riboli, P. Bettotti, and L. Pavesi, "Band gap characterization and slow light effects in one dimensional photonic crystals based on silicon slot-waveguides," Opt. Express 15, 11769-11775 (2007). [CrossRef] [PubMed]
  11. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, "Fabrication of low-loss photonic wires in silicon-on-insulator using Hydrogen Silsesquioxane electron-beam resist," Electron. Lett. 44, 115-116 (2008). [CrossRef]
  12. F. Fogli, N. Greco, P. Bassi, G. Bellanca, P. Aschieri, and P. Baldi, "Spatial harmonics modelling of planar periodic segmented waveguides," Opt. Quantum Electron. 33, 485-498 (2001). [CrossRef]
  13. P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron. 33, 327-341 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited