OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 11 — May. 25, 2009
  • pp: 8843–8855

Fluorescence lifetime imaging from time resolved measurements using a shape-based approach

Diego Álvarez, Paúl Medina, and Miguel Moscoso  »View Author Affiliations

Optics Express, Vol. 17, Issue 11, pp. 8843-8855 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (691 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel fluorescent tomography algorithm to estimate the spatial distribution of fluorophores and the fluorescence lifetimes from surface time resolved measurements. The algorithm is a hybridization of the level set technique for recovering the distributions of distinct fluorescent markers with a gradient method for estimating their lifetimes. This imaging method offers several advantages compared to more traditional pixel-based techniques as, for example, well defined boundaries and a better resolution of the images. The numerical experiments show that our imaging method gives rise to accurate reconstructions in the presence of data noise and fluorescence background even for complicated fluorophore distributions in several-centimiter-thick biological tissue.

© 2009 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 6, 2009
Revised Manuscript: May 9, 2009
Manuscript Accepted: May 9, 2009
Published: May 12, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Diego Álvarez, Paúl Medina, and Miguel Moscoso, "Fluorescence lifetime imaging from time resolved measurements using a shape-based approach," Opt. Express 17, 8843-8855 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, "Fluorescence molecular imaging," Annu. Rev. Biomed. Eng. 8, 1-33 (2006). [CrossRef] [PubMed]
  2. O. Dorn, "A transport-backtransport method for optical tomography," Inverse Probl. 14, 1107-1130 (1998). [CrossRef]
  3. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  4. M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, "Reconstructing absorption and diffusion shape profiles in optical tomography using a level set technique," Opt. Lett. 31, 471-473 (2006). [CrossRef] [PubMed]
  5. P. Gonzalez-Rodriguez, A. D. Kim, and M. Moscoso, "Reconstructing a thin absorbing obstacle in a half space of tissue," J. Opt. Soc. Am. A 24, 3456-3466 (2007). [CrossRef]
  6. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimiter resolution for small animal imaging," Med. Phys. 30, 901 (2003). [CrossRef] [PubMed]
  7. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004). [CrossRef] [PubMed]
  8. A. D. Klose, V. Ntziachristos, and A. H. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005). [CrossRef]
  9. A. D. Kim and M. Moscoso, "Radiative transport theory for optical molecular imaging," Inverse Probl. 22, 23-42 (2006). [CrossRef]
  10. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996). [CrossRef] [PubMed]
  11. E. Shives, Y. Xu, and H. Jiang, "Fluorescence lifetime tomography of turbid media based on an oxygen-sensitive dye," Opt. Express 10, 1557-1562 (2002). [PubMed]
  12. A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," J. Opt. Soc. Am. A 21, 1035-1049 (2004). [CrossRef]
  13. A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005). [CrossRef] [PubMed]
  14. B. B. Das, F. Liu, and R. R. Alfano, "Time-resolved fluorescence and photon migration studies in biomedical and model random media," Rep. Prog. Phys. 60, 227 (1997). [CrossRef]
  15. G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, "Complete-angle projection diffuse optical tomography by use of early photons," Opt. Lett. 30, 409-411 (2005). [CrossRef] [PubMed]
  16. S. Lam, F. Lesage, and X. Intes, "Time domain fluorescent diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005). [CrossRef] [PubMed]
  17. S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, S. Achilefu, " Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005). [CrossRef] [PubMed]
  18. A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, "Fluorescence-lifetime-based tomography for turbid media," Opt. Lett. 30, 3347-3349 (2005). [CrossRef]
  19. A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, "Time resolved fluorescence tomography of turbid media based on lifetime contrast," Opt. Express 14, 12255-12270 (2006). [CrossRef] [PubMed]
  20. A. T. N. Kumar, S. B. Raymond, B. J. Bacskai, and D. A. Boas, "Comparison of frequency-domain and timedomain fluorescence lifetime tomography," Opt. Lett. 33, 470-472 (2008). [CrossRef] [PubMed]
  21. F. Santosa, "A Level set approach for inverse problems involving obstacles," ESAIM Control, Optimization and Calculus of Variations 1, 17-33 (1996). [CrossRef]
  22. O. Dorn and D. Lesselier, "Level set methods for inverse scattering," Inverse Probl. 22, R67-R131 (2006). [CrossRef]
  23. N. Irishina, M. Moscoso, and O. Dorn, "Microwave imaging for early breast cancer detection using a shape-based strategy," IEEE Trans. Biomed. Eng. 56, 1143-1153 (2009). [CrossRef] [PubMed]
  24. S. Osher and J. A. Sethian, "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations," J. Comput. Phys. 79, 12-49 (1988). [CrossRef]
  25. F. Santosa, "A level set approach for inverse problems involving obstacles," ESAIM Control, Optim. Calculus Variations 1, 17-33 (1996). [CrossRef]
  26. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, "Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media," Appl. Opt. 36, 2260-2272 (1997). [CrossRef] [PubMed]
  27. J. Chang, H. L. Graber, and R. L. Barbour, "Imaging of fluorescence in highly scattering media," IEEE. Trans. Biomed. Eng. 44, 810 (1997). [CrossRef] [PubMed]
  28. H. Jiang, "Frequency-Domain Fluorescent Diffusion Tomography: A Finite-Element-Based Algorithm and Simulations," Appl. Opt. 37, 5337-5343 (1998). [CrossRef]
  29. V. Ntziachristos and R. Weissleder, "Charge-coupled-device based scanner for tomography of fluorescent nearinfrared probes in turbid media," Med. Phys. 29, 803 (2002). [CrossRef] [PubMed]
  30. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R.P Millane, "Fluorescence Optical Diffusion Tomography," Appl. Opt. 42, 3081-3094 (2003). [CrossRef] [PubMed]
  31. A. D. Kim and J. B. Keller, "Light propagation in biological tissue," J. Opt. Soc. Am. A 20, 92-98 (2003). [CrossRef]
  32. A. D. Kim and M. Moscoso, "Beam propagation in sharply peaked forward scattering media," J. Opt. Soc. Am. A 21, 797-803 (2004). [CrossRef]
  33. A. D. Kim and P. Tranquilli, "Numerical solution of a boundary value problem for the Fokker-Planck equation with variable coefficients," J. Quant. Spectrosc. Radiat. Transfer 109, 727-740 (2007).
  34. D. A´ lvarez, O. Dorn, N. Irishina, and M. Moscoso, "Crack reconstructions using a level-set strategy," J. Comput. Phys. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited