OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 11 — May. 25, 2009
  • pp: 8926–8940

Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo

Ruikang K Wang and Lin An  »View Author Affiliations


Optics Express, Vol. 17, Issue 11, pp. 8926-8940 (2009)
http://dx.doi.org/10.1364/OE.17.008926


View Full Text Article

Enhanced HTML    Acrobat PDF (1170 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a Doppler optical micro-angiography (DOMAG) method to image flow velocities of the blood flowing in functional vessels within microcirculatory tissue beds in vivo. The method takes the advantages of recently developed optical micro-angiography (OMAG) technology, in which the endogenous optical signals backscattered from the moving blood cells are isolated from those originated from the tissue background, i.e., the tissue microstructures. The phase difference between adjacent A scans of OMAG flow signals is used to evaluate the flow velocity, similar to phase-resolved Doppler optical coherence tomography (PRDOCT). To meet the requirement of correlation between adjacent A scans in using the phase resolved technique to evaluate flow velocity, an ideal tissue-sample background (i.e., optically homogeneous tissue sample) is digitally reconstructed to replace the signals that represent the heterogeneous features of the static sample that are rejected in the OMAG flow images. Because of the ideal optical-homogeneous sample, DOMAG is free from the characteristic texture pattern noise due to the heterogeneous property of sample, leading to dramatic improvement of the imaging performance. A series of phantom flow experiments are performed to evaluate quantitatively the improved imaging performance. We then conduct in vivo experiments on a mouse brain to demonstrate that DOMAG is capable of quantifying the flow velocities within cerebrovascular network, down to capillary level resolution. Finally, we compare the in vivo imaging performance of DOMAG with that of PRDOCT, and show that DOMAG delivers at least 15-fold increase over the PRDOCT method in terms of the lower limit of flow velocity that can be detected.

© 2009 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: February 25, 2009
Revised Manuscript: March 29, 2009
Manuscript Accepted: April 27, 2009
Published: May 13, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Ruikang K Wang and Lin An, "Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo," Opt. Express 17, 8926-8940 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-11-8926


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003). [CrossRef]
  2. P. H. Tomlins and R. K. Wang, “Theory, development and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005). [CrossRef]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  4. Z. P. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997). [CrossRef] [PubMed]
  5. Y. H. Zhao, Z. P. Chen, Z. H. Ding, H. Ren, and J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27(2), 98–100 (2002). [CrossRef]
  6. G. Häusler and M. W. Lindner, “Coherence radar and Spectral radar- new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998). [CrossRef]
  7. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29(2), 171–173 (2004). [CrossRef] [PubMed]
  8. J. Zhang and Z. P. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Express 13(19), 7449–7459 (2005). [CrossRef] [PubMed]
  9. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5492 (2005). [CrossRef] [PubMed]
  10. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003). [CrossRef] [PubMed]
  11. B. R. White, M. C. Pierce, and N. Nassif, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490–3497 (2003). [CrossRef] [PubMed]
  12. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006). [CrossRef] [PubMed]
  13. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003). [CrossRef] [PubMed]
  14. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  15. R. K. Wang and Z. H. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett. 31(20), 3001–3003 (2006). [CrossRef] [PubMed]
  16. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004). [CrossRef] [PubMed]
  17. H. W. Ren, T. Sun, D. J. MacDonald, M. J. Cobb, and X. D. Li, “Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography,” Opt. Lett. 31(7), 927–929 (2006). [CrossRef] [PubMed]
  18. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15, 408–422 (2007). [CrossRef] [PubMed]
  19. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008). [CrossRef] [PubMed]
  20. R. K. Wang, “In vivo full rang complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90(5), 054103 (2007). [CrossRef]
  21. R. K. Wang, “Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning,” Phys. Med. Biol. 52(19), 5897–5907 (2007). [CrossRef] [PubMed]
  22. L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32(23), 3423–3425 (2007). [CrossRef] [PubMed]
  23. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three Dimensional Optical Angiography,” Opt. Express 15(7), 4083–4097 (2007). [CrossRef] [PubMed]
  24. R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 ?m wavelength,” Opt. Express 15(18), 11402–11412 (2007). [CrossRef] [PubMed]
  25. R. K. Wang, “Three dimensional optical angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo,” Phys. Med. Biol. 52(531–N), 537 (2007). [CrossRef]
  26. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008). [CrossRef] [PubMed]
  27. M. Mujat, R. C. Chan, B. Cense, B. H. Park, C. Joo, T. Akkin, T. C. Chen, and J. F. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13(23), 9480–9491 (2005). [CrossRef] [PubMed]
  28. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis. ISBN number: 0819464333. SPIE (2007)
  29. H. Ren and X. Li, “Clutter rejection filters for optical Doppler tomography,” Opt. Express 14(13), 6103–6112 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited