OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 11 — May. 25, 2009
  • pp: 8983–8997

Highly efficient channel-drop filter with a coupled cavity-based wavelength-selective reflection feedback

Kiazand Fasihi and Shahram Mohammadnejad  »View Author Affiliations


Optics Express, Vol. 17, Issue 11, pp. 8983-8997 (2009)
http://dx.doi.org/10.1364/OE.17.008983


View Full Text Article

Enhanced HTML    Acrobat PDF (986 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have proposed a three-port high efficient channel-drop filter (CDF) with a coupled cavity-based wavelength-selective reflector, which can be used in wavelength division multiplexing (WDM) optical communication systems. The coupling mode theory (CMT) is employed to drive the necessary conditions for achieving 100% drop efficiency. The finite-difference time-domain (FDTD) simulation results of proposed CDF which is implemented in two dimensional photonic crystals (2D-PC), show that the analysis is valid. In the designed CDF, the drop efficiency larger than 0.95% and the spectral line-width 0.78nm at the center wavelength 1550nm have been achieved.

© 2009 Optical Society of America

OCIS Codes
(130.1750) Integrated optics : Components
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

History
Original Manuscript: January 28, 2009
Revised Manuscript: April 9, 2009
Manuscript Accepted: April 13, 2009
Published: May 14, 2009

Citation
Kiazand Fasihi and Shahram Mohammadnejad, "Highly efficient channel-drop filter with a coupled cavity-based wavelength-selective reflection feedback," Opt. Express 17, 8983-8997 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-11-8983


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade, Photonic Crystal: Molding the Flow of Light (Princeton, Princeton Univ. Press, 2008).
  2. M. F. Yanik, H. Altug, J. Vuckovic, and S. Fan, "Submicrometer All-Optical Digital Memory and Integration of Nanoscale Photonic Devices without Isolator," J. Lightwave Technol. 22, 2316-2322 (2004). [CrossRef]
  3. M. Koshiba, "Wavelength Division Multiplexing and Demultiplexing With Photonic Crystal Waveguide Coupler," J. Lightwave Technol. 19, 1970-1975 (2001). [CrossRef]
  4. A. Mekis, M. Meier, A. Dodabalapur, R. E. Slusher, and J. D. Joannopoulos, "Lasing mechanism in two-dimensional photonic crystal lasers," Appl. Phys. A: Mat. Sci. Proc. 69, 111-114 (1999). [CrossRef]
  5. M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, "All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry," Opt. Lett. 28, 2506-2508 (2003). [CrossRef] [PubMed]
  6. Z. Zhang and M. Qiu, "Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs," Opt. Express 13, 2596-2604 (2005). [CrossRef] [PubMed]
  7. S. Kim, I. park, H. Lim, and C. Kee, "Highly efficient photonic crystal-based multi-channel drop filters of three-port system with reflection feedback," Opt. Express 12, 5518-5525 (2004). [CrossRef] [PubMed]
  8. S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000). [CrossRef] [PubMed]
  9. B. Song, T. Asano, Y. Akahane, and S. Noda, "Role of interfaces in hetero photonic crystals for manipulation of photons," Phys. Rev. B 71, 195101-195101 (2005). [CrossRef]
  10. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop filters in photonic crystals," Opt. Express 3, 4-11 (1998). [CrossRef] [PubMed]
  11. B. K. Min, J. E. Kim, and H. Y. Park, "Channel drop filters using resonant tunneling processes in two dimensional triangular lattice photonic crystal slabs," Opt. Commun. 237, 59-63 (2004). [CrossRef]
  12. Z. Zhang and M. Qiu, "Coupled-mode analysis of a resonant channel drop filter using waveguides with mirror boundaries," J. Opt. Soc. Am. B 23, 104-113 (2004). [CrossRef]
  13. M. Y. Tekeste and J. M. Yarrison-Rice, "High efficiency photonic crystal based wavelength demultiplexer," Opt. Express 14, 7931-7942 (2006). [CrossRef] [PubMed]
  14. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004). [CrossRef] [PubMed]
  15. C. Jin, S. Fan, S. Han, and D. Zhang, "Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration," J. Quantum Electron. 39, 160-165 (2003). [CrossRef]
  16. C. W. Kuo, C. F. Chang, M. H. Chen, S. Y. Chen, and Y. D. Wu, "A new approach of planar multi-channel wavelength division multiplexing system using asymmetric super-cell photonic crystal structures," Opt. Express 15, 198-206 (2006). [CrossRef]
  17. H. Ren, C. Jiang, W. Hu, M. Gao, and J. Wang, "Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity," Opt. Express 14, 2446-2458 (2006). [CrossRef] [PubMed]
  18. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency," Phys. Rev. B 54, 7837-7842 (1996). [CrossRef]
  19. A. Yariv, Y. Xu, R. Lee and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999). [CrossRef]
  20. W. Ding, L. Chen and S. Liu, "Localization properties and the effects on multi-mode switching in discrete mode CCWs," Opt. Commun. 248, 479-484 (2004). [CrossRef]
  21. H. A. Haus, Waves and Field in Optoelectronics (Prentice-Hall, 1984).
  22. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322 -1333 (1999). [CrossRef]
  23. T. Fujisawa and M. Koshiba, "Finite-Element Modeling of Nonlinear Mach-Zehnder Interferometers Based on Photonic- Crystal Waveguides for All-optical Signal Processing," J. Lightwave Technol. 24, 617-623 (2006). [CrossRef]
  24. C. C. Chen, C. Y. Chen, W. K. Wang, F. H. Huang, C. K. Lin, W. Y. Chiu, and Y. J. Chan, "Photonic crystal directional couplers formed by InAlGaAs nano-rods," Opt. Express 13, 38-43 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited